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Abstract—With the advent of Industry 4.0 and human-in-the-loop
paradigms, Cyber-Physical Systems (CPS) are becoming increasingly
common in production facilities, and, consequently, there has been a surge
of interest in the field. In production systems, CPS, which assist humans
in completing tasks are called assistance systems. Most recent designs
proposed for assistance systems in the production domain are monolithic
and allow only limited modifications. In contrast, this work considers an
assistance system to have a hybrid architecture consisting of a central
entity containing the process description (or instructions) and one or more
plug-and-play Cyber-Physical Systems to retrieve relevant information
from the physical environment. Such a design allows the overall system
capabilities to be adapted to the needs of workers and tasks. In this paper,
a framework is presented for designing the CPS modules using Semantic
Web technologies, which will allow (i) interpretation of all data, and (ii)
interoperability among the modules, from the very outset. Furthermore, a
knowledge description model and ontology development of a CPS module
is described. Two different models of maintaining ontologies and the
ecosystem are described along with their advantages and disadvantages.
An approach is illustrated with the help of a use case for implementing
the framework to design a module, data exchange among modules,
and to build a sustainable ecosystem of ontologies, which enables rapid
development of third-party CPS modules. An implementation is provided
discussing hardware, software and communication design of such a
module and future direction of research is discussed.

Keywords—human-centered CPS; assistance systems; adaptive automa-
tion; ontology; interoperability.

I. INTRODUCTION

An ever growing catalogue of products, [1] short product life-
cycle, competitive product costs, and changing demographics have
led to a demand of reactive and proactive production systems that
can adapt to the changing needs [2]–[4]. According to the European
Factories of the Future Research Association, human-centricity is a
prerequisite for the production systems to be flexible and adapt to the
changing demographics [5][6]. Thus, major efforts are being made
to make adaptive human-centered CPS (H-CPS) where machines and
automation adapt to the physical and cognitive needs of humans in a
dynamic fashion [7][8].

In this paper, assistance systems are considered as H-CPS in
production systems. Assistance systems assess the production process
using sensors embedded in the environment and, based on the state
of the process, provide instructions to workers through visualisation
devices attached to them [9]. Although humans have unparalleled
degree of flexibility, i.e., humans can adapt to varying production,
major focus is being placed on increasing the flexibility of automation
systems that help workers during processes. Emerging developments
like modularity, Service-Oriented Architecture (SOA), interoperability
by the virtue of common semantic description (e.g., administrative
shell [10][11]), and edge-computing [12] are rarely applied to H-CPS.

In this paper, a CPS-based assistance system, which adapts to
a worker’s need by exploiting the benefits of such techniques is

Figure 1. Schematic description of an assistance system.

proposed. Such an assistance system has a central system and one or
more CPS modules attached to it as shown in Figure 1. CPS modules
feed information extracted from the environment to the central system.
The central system, in turn, processes this information to assess the
state of the process and the worker’s needs.

To the best of the authors’ knowledge, no design so far allows one
module to access and use the data from other modules. In this paper,
semantic design of modules and interoperability between different
parts of an assistance system are discussed in detail, and consequently,
a Semantic Description and Interoperability (SDI) framework is
proposed.

In the remainder of the paper, first the state-of-the-art and related
work is presented in Section II and then the concepts of modularity
and interoperability are discussed in detail in Section III. Next,
Section IV discusses the SDI framework for design of modules and
Section V further explains ecosystem of ontologies. In Section VI,
the development of such modules is discussed. Finally, the imple-
mentation of an assistance system is simulated using the proposed
framework in Section VII, followed by the conclusion and potential
future work.

II. RELATED WORK

The vision of Computers in Manufacturing (CIM) of creating
completely automated factories could not be realized due to the
complexity involved in production processes [13]. The effort to
implement CIM made it clear to engineers that completely automated
factory is not a plausible solution as per the state-of-the-art. Humans
are an indispensable part of production systems but automation at
different stages of product is a necessity and a practical approach
to the problems of increasing product variants, reducing product
life-cycle and rising labour costs [5]. Thus, CIM established that it
is important that the CPS systems developed should help humans
instead of trying to replace them because with the current state of



the technology it is difficult to replicate human cognitive skills. This
has lead to human-centric workplaces and the approach was coined
human-in-the-loop.

Human-system interaction is an indispensable part of the pro-
duction systems and acts as an enabler of the intelligent decision
making process [14]. In complex production scenarios, the symbiotic
man-machine systems are the optimal solution. This change in the
nature of human-machine led to the paradigm shift from indepen-
dently automated and manual processes towards a human-automation
symbiosis called human cyber-physical systems. These systems are
characterized by collaborative effort of workers and machines and
aim at assisting workers being more efficient and effective [5]. These
systems are based on a trusting and interaction-based relationship,
which has human supervisory control and human situation awareness,
leading to adaptive automation to improve knowledge of worker and
help the process.

Production facilities are focusing on cyber-physical systems
(CPSs) that can interact with human through many modalities. CPSs
are a combination of interacting embedded computers and physical
components. Both computation and physical processes work in paral-
lel to bring about the desired output. Computers usually monitor the
physical processes via sensors in real-time and provide feedback to
actuators [15], [16]. A CPS consists of one or more micro-controllers
to control sensors and actuators which are necessary to collect data
from and interact with its environment. These systems also need
communication interface to exchange data with other smart devices
and a cloud. According to Jazdi [16], data exchange is the most
important feature of cyber physical systems. CPSs connected over
internet are also known as Internet-of-Things.

Its vision is to bring automation in the field of production and
help combat the problems of increasing catalogue and labour costs.
The information and communication technologies have trickled their
way down to the production systems, paving the way for monolithic
production systems to become modular and have decentralized control
architectures. It is one of the most significant directions in computer
science, information & communication technologies and manufactur-
ing technologies. With the increasing sophistication of actuators and
sensors available in the market, availability of data has increased many
folds. The CPSs used to create flexible and re-configurable production
systems called Cyber-Physical Production Systems (CPPSs). CPPSs
are build on the principle of modularity and decentralized control.
Thus, these modules are loosely coupled with each other.

Neither traditional nor fully automated systems can respond
effectively and efficiently to dynamic changes in the system [17].
Hence, workers should be assisted, as needed, in their work, thus,
including automation with human aptitude as a trouble shooter.
Manual assembly stations with assistance systems are developed
based on this concept. These stations are modular units, one in
the chain of many automated/semi-automated stations. Products are
assembled by workers at each station. Usually, production facilities
are one piece flow. Depending upon the assembly plan of a product,
one or more processes can be performed on a station.

This work brings together two different areas of research: devel-
opment of CPS for production, as well as the semantic design of
these systems. Related work in both areas are discussed separately
and some aspects are discussed in detail.

A. Assistance Systems

Production facilities are focusing on CPS that can interact with
human through many modalities. There is significant contemporary
research interest in using sensor technology for developing context-
aware CPS [9][18]–[20]. Nelles et al. have looked into assistance
systems for planning and control in production environment [18].
Gorecky et al. have explored cognitive assistance and training systems
for workers during production [19]. Pirvu et al. [21] talk about
the engineering insights of human centered, yet highly automated,
cyber-physical system while (i) keeping in mind adaptive control,
(ii) cognitive assistance, and (iii) training in manual industrial as-
sembly. The aim of such a system is to design a mobile, personal
assembly work station which assists the worker in task solving in
real time while understanding and inducing work-flows. Standardized
abstractions and architectures help the engineers in the design phase
by reducing the complexity involved in building such systems [22].
Zamfirescu et al. have also integrated virtual reality and a hand-
tracking module to help workers during assembly processes [20].
Figure 1 shows a schematic description of such an assembly station.
These stations are equipped with different visualization techniques
and sensor technologies. Visualization techniques, like projectors and
smart glasses as shown in Figure 1, help workers during assembly
process by displaying instructions. Interactive screens can also be
installed at assembly stations using which workers can interact with
stationery computers when required. Assembly stations have areas
dedicated for storing tools and parts used during assembly. Sensors
can be employed to track usage of tools and control inventory of
parts. RFID readers are installed on products and to know the current
status of products in addition to the tools and parts as in the traditional
workstations.

Assistance system derives its principles from the Operator 4.0
principle where workers are provided machines to aid their work. It
helps workers by reading the product status available with products
in machine readable format, collecting other information about the
environment and helping the worker to decide the next step to be
taken based on the information it receives. Hence, this system can
be seen as a context aware human-centric cyber-physical system. As
shown in Figure 1, this system consists of a central system and one
or more CPS modules.

These CPS modules are built on the principle of plug-and-
produce. The analogy is drawn from plug-and-play concept in com-
puter science [23]. Plug-and-produce means a smart device can be
easily added or removed, replaced without disrupting functioning of
the system. The system should continue working while a CPS module
is being added or removed. Additionally, the system should be able
to recognize the newly added CPS. This process is different from
the traditional processes in which systems need to be reprogrammed
and machines are stopped for reconfiguration. Time taken in the
complete process is counted as downtime. Similarly, in case of plug-
and-produce systems maintenance can be done by removing only the
required CPS module while the complete system continues working.

For this purpose, each CPS module should have its own envi-
ronmental information and it should provide this information to the
system to which it is being attached [23]. This gives central system
the leeway to reconfigure and requires CPS modules to be smart
and adaptive which demands CPS modules to have certain level of
intelligence.



Very recently, Quint et al. have proposed a hybrid architecture of
such a system, which is composed of a central system and modules
which can handle heterogeneous data [9]. However, they do not
explore standardizing the design of such modules. In this work, a
framework for designing CPS modules and an ecosystem for ensuring
interoperability across these modules is proposed.

B. Semantic Design

The Semantic Web is an extension of World Wide Web that
promotes common data formats and exchange protocols on the
Web through standards. Wahlster et al. [24][25] use Semantic Web
technologies to represent and integrate industrial data in a generic
way. Grangel et al. [11] discuss Semantic Web technologies in
handling heterogeneous data from distributed sources using light-
weight vocabulary. Semy et al. [26] describe these technologies as
the key enabler for building pervasive context-aware system wherein
independently developed devices and softwares can share contextual
knowledge among themselves.

Recently, there have been some efforts towards discussing the
need of bringing more semantics and data-driven approaches to
Industry 4.0. Cheng et al. [27] identify varying degree of semantic
approach and further provide guidelines to engineers to select appro-
priate semantic degree for different Industry 4.0 projects. Wahlster
et al. [24] talk about the importance of semantic technologies in
mass production of smart products, smart data and smart services.
Semantic service matchmaking in cyber-physical production systems
is presented as a key enabler of the disruptive change in the production
logic for Industry 4.0. Obitko et al. [28] introduce the application of
semantic web technologies in handling large volumes of heteroge-
neous data from distributed sources. Grangel et al. [11] describe an
approach to semantically represent information about smart devices.
The approach is based on structuring the information using an
extensible and light-weight vocabulary aiming to capture all relevant
information. Semantic Web technology formalisms, such as Resource
Description Framework (RDF), RDF Schema and Web Ontology
Language (OWL), help solve the major hurdle towards description
and interoperability between CPS by annotating the entities of a
system. Some of the major advantages of using RDF-based semantic
knowledge representation are briefly discussed here:

Global unique identification. Semantic Web describes each entity
within a CPS and its relations as a global unique identifier. According
to the principles of Semantic Web, HTTP URIs/IRIs should be used
as the global unique identifiers [29]. This ensures disambiguation,
and retrieval, of entities in the complete system. As a consequence, a
decentralised, holistic and global unique retrievable scheme of CPS
can be established.

Interoperability. Interoperability is the ability to communicate and
interconnect CPS from different vendors. It is vital in order to
have cost effective rapid development. According to domain ex-
perts [11][25][30], RDF and Linked Data are proven Semantic Web
technologies for integrating different types of data. Gezer et al. [31]
mention that OWL-S ensures better interoperability by allowing ser-
vices to exchange data and allowing devices to configure themselves.

Apart from the above mentioned advantages, by using RDF
representation different data serialization formats, for example RD-
F/XML, RDF/OWL can be easily generated and transmitted over the
network [11]. Further, data can be made available through a standard

interface using SPARQL, a W3C recommendation for RDF query
language [32].

Recently, Negri et al. [33] discussed requirements and languages
of semantic representation of manufacturing systems and conclude
that ontologies are the best way of such representations in the domain.
The authors also highlighted importance of ontologies in provid-
ing system description in an intuitive and human-readable format,
standardization not only in terms of definitions and axioms, but
also standardizing Web-services and message-based communication.
This not only makes engineering of the system streamlined but also
facilitates interoperability between parts of the system. In his seminal
work, Nocola Guarino formally defined ontologies both as a tool for
knowledge representation and management, as well as a database for
information extraction and retrieval [34]. In particular, he describes
how ontologies can play a significant role during development, as
well as run-time, for information systems.

Further, Niles et al. [35] highlighted the usefulness of upper
ontologies in facilitating interoperability between domain-specific
ontologies by the virtue of shared globally unique terms and def-
initions (HTTP URIs/IRIs) in a top-down approach of building a
system. Semy et al. [26] also described mid-level ontologies as
a bridge between upper ontologies and domain-specific ontologies,
which encompass terms and definitions used across many domains
but do not qualify as key concepts. Furthermore, Sowa et al. [36]
discussed ontology integration and conflicts of data in the process.
They conclude that ontology merge is the best way of ontology
integration as it preserves complete ontologies while collecting data
from different parts of the system into a coherent format. In the
remainder of the paper, unless otherwise stated, the definition of
ontologies and standards as given by W3C [32] are followed.

C. Ontologies

In computer science, ontologies were developed for the Semantic
web. The aim of Semantic web is to help software agents interact and
share information over the internet. This is done by encoding the data
in a machine interpretable language using constraints defined in the
domain ontology. This lets software agents locate resources to extract
and use information on the web. This differentiates ontologies from
other traditional languages, like UML and SysML, used to describe
software structure.

Ontologies conceptualise a domain by capturing its structure. In
this section, some features of ontologies, which are relevant for the
proposed design are discussed. Ontologies are used to explicitly define
entities and relations between entities. Figure 2 shows an example of
a small ontology, an associated SPARQL query language, and query
results obtained during a run-time. Ontologies provide unique global
addresses to all entities and relations using HTTP URIs/IRIs. Hence,
with the virtue of HTTP URIs/IRIs, entities and relations can be
referred to easily from within and outside the system. Ontologies
can also be imported, which is how definitions of entities and their
relationships can be re-used during development time. This feature,
as shown in the work later, is crucial in creating an ecosystem of
ontologies. During run-time, individuals of the entities along with
their relationships with each other are created.

In the remainder of the section, important features relevant for
this work are discussed:

Upper ontologies are high-level, domain-independent ontologies,
providing a framework by which disparate systems may utilize a



Figure 2. An example of ontology definitions and relations, SPARQL query
and results.

common knowledge base and from which more domain-specific
ontologies may be derived [26]. Thus, upper ontologies facilitate
interoperability between domain-specific ontologies by the virtue of
shared common terms and definitions [37]. They contain definitions
and axioms for common terms that are applicable across multiple
domains and provide principled forms of conceptual inter-linkage
between data [38]. Thus, provide semantic integration of domain
ontologies.

On the other hand, domain ontologies have specific concepts
particular to a domain and represent these concepts and their re-
lationships from a domain-perspective. Multiple domains can have
the same concept but their representation may vary due to different
domain contexts. Domain ontologies inherit the semantic richness and
logic by importing upper ontologies.

Another important feature of upper ontology is the structure that
they impose on the ensuing ontologies: they promote modularity,
extensibility, and flexibility. According to Semy et al. [26], upper
ontologies can be built using two approaches: top-down and bottom-
up. They discuss benefits and limitations of both approaches. In a
top-down approach domain ontology uses the upper ontology as the
theoretical framework and the foundation for deriving concepts [26].
In a bottom-up approach, new or existing domain ontologies are
mapped to an upper ontology. This approach also benefits from the
semantic knowledge of upper ontology but the mapping can be more
challenging as inconsistencies may exist between the two ontologies.
For example, two teams may have different vocabulary for a similar
semantic variable. In this case, mapping the two ontologies to an
upper ontology would have inconsistencies. These inconsistencies are
resolved as and when needed. However, usually a combination of both
approaches is used to design upper ontologies.

The solution proposed to the problem of interoperability across
modules relies heavily on the idea of upper ontologies. Upper
ontology starts with defining a set of high level entities and then suc-
cessively adding new content under these entities [35]. The solution
incorporates both the top-down and bottom-up approaches. Depending
on the need entities are added to the high level ontology.

Mid-level ontologies act as a bridge between basic vocabulary
described in the upper ontology and domain-specific low-level on-
tology. This category of ontologies may also encompass terms and
definitions used across many domains.

Ontology development can be seen as defining structure, con-
straints and data for other programs to use. Software agents and
other problem solving methods can use these ontologies as ready-
made data that can be fed to the program in order to understand the
vocabulary and basic principles of the domain. The independently
developed ontologies need to join to exchange data.

Ontology integration is the process of finding commonalities
between two ontologies, for example Ontology A and ontology B, and

a third ontology C is derived from it. This new ontology C facilitates
interoperability between software agents based on ontologies A and
B. The new ontology C may replace the old ontologies or may be
used as only an intermediary between systems based on ontologies A
and B are merged in a third ontology C. Ontologies can be integrated
primarily in three ways depending on the amount to change required
to derive the new ontology [39] [40]. In this work, we recommend
ontology merge to integrate ontologies.

To know more about ontologies, the reader is encouraged to visit
the W3C standards [32]. The described features are essential while
designing and implementing the proposed SDI framework.

III. MODULAR DESIGN AND INTEROPERABILITY

The assistance system should be designed to be adaptive and
flexible, such that it should be possible to combine different CPS with
very varying capabilities without requiring extensive configuration
from the worker. This flexible design makes it possible to scale the
intelligence of the overall system by adding/removing CPS. The paper
assumes that the central system contains a process description model,
which describes the instructions for a process. The model remains
unchanged irrespective of addition or removal of CPS modules.
Adding new CPS modules to the central system makes the complete
assistance system more aware of its environment and consequently
more intelligent.

An assistance system, considered in this work, has hybrid archi-
tecture which consists of CPS modules and a central system where
each CPS module collects and preprocesses data and feeds informa-
tion to a central decision-making entity as shown in Figure 1. The
central system collects information from all the modules attached to it
and decides the next step of the process depending upon the process
description model. Next step in the process is conveyed to a worker
with the help of visualisation devices as shown in Figure 1. In contrast
to a completely centralised or decentralised architecture, in a hybrid
architecture, the burden of making sense from the raw-data is divided
between the CPS modules and the central system: the modules need
to preprocess raw data and make minor decisions before reporting it
to the central system. The preprocessing step may include operations
like analog to digital conversion, computing a parameter which is
a function of data from more than one sensor (e.g., numberofParts
from totalWeight and weightPerPart), calculating a moving average
of a sensor reading, etc. This avoids any computing overhead on both
the central system and CPS modules, and consequently makes them
more intelligent and context-aware. This division is discussed in detail
in Section IV.

A modular design enforces separation of concerns: the central
system will only rely on the information provided by the modules. As
per the traditional modular design, the internal state of the modules,
i.e., the implementation details, would ideally be made completely
opaque and inaccessible to the central system and other modules. In
contrast, in this work, a framework for designing the modules using
ontologies is proposed, which will allow the modules to access and
use information from each other.

There are several challenges which need to be addressed in order
to allow for such interoperability. The paper shows how these can be
overcome by semantically annotating the information in each module
using ontologies. As discussed in the previous section, an outright
advantage of using ontologies is that they can give a unique name,
i.e., URIs/IRIs, to each piece of information in the complete system,



thus, making it immediately accessible using a simple declarative
querying language (SPARQL) as shown in Figure 2 [41]. Moreover,
other advantages come naturally with using ontologies, viz. self-
documentation, automatic reasoning using description logic for free.

Using ontologies as the tool of choice, the following two ques-
tions are considered.

(i) How to design and semantically annotate a CPS module?
This question is answered in Section IV.

(ii) How to develop such modules using ontologies? This issue
is discussed in Section VI and in Section VII.

Remark. Note that the decision-making algorithm in the central
system should be designed in such a way that it does not need to
be adapted to accommodate the underlying frequently changing CPS
modules, i.e., the assistance system should be able to function without
all modules being attached to the system and the modules should be
plug-and-play. However, the problem of designing the algorithm is
out of the scope of this work.

IV. FRAMEWORK FOR DESIGNING A CPS

In this section, a framework for designing a CPS module and its
ontology is proposed as shown in Figure 7. It starts with what the
module designer wants to achieve by adding a particular CPS to the
system, and then determines its boundary, or scope, with respect to the
central system. Next, decisions about the intelligence of the system are
made which, in turn, influence the hardware choices for the module.
Finally, a bottom up ontology of a CPS is created and its integration
with the central system ontology is described. Examples inspired from
Figure 1 are discussed throughout the paper. The framework, and
its implementation, are explained with the help of a use case of an
inventory module which is shown in Figure 4.

Figure 3. SDI framework for designing a CPS module.

A. Requirements

At the outset, it is important to understand why a CPS module
is required. This decision determines the metric used for measuring
the effectiveness of a module finally. This objective may range from

general, e.g., “increasing the efficiency of a factory”, to specific, e.g.,
“decreasing the number of errors for a particular assembly station”.

For example, the requirement behind adding an inventory module
can be to make the assistance system more aware of the environment
in order to better understand the state of the process by the virtue
of parts used in the process. This, in turn, improves the ability of an
assistance system to help the worker. Keeping the requirements as
specific as possible helps with the next step of the design.

Figure 4. Schematic description of an inventory module

B. System Boundary

In the next step, the objective needs to be translated into a
concrete piece of information that the central system needs from the
CPS. An analogy can be drawn between the information which the
central system needs and the idea of minimal sufficient statistic: the
information should be sufficient for the central system to arrive at its
objective. This information is the interacting variable between a CPS
module and the central system.

Figure 5. Two ways of calculating mean: in the first case complete raw data
is provided to the central node to calculate mean whereas in the second case,
only the sufficient statistic is provided.

In statistics, a statistic is sufficient with respect to a parameterized
statistical model if no other statistic that can be derived from the same
sample (e.g., raw sensor data) provides any additional information as
to the value of the parameter. For example, consider the sufficient
statistic to calculate mean of samples which are distributed across
multiple nodes as shown in Figure 5. Each node only needs to report
the sum of its samples and the number of samples to the central
node doing the calculations. The central node then can calculate the
total sum and the total number of samples and produce the mean
without having the complete raw data (thereby saving computation
and communication costs).

In terms of ontologies, the interacting variable needs to have
the same URI/IRI in both the central system ontology as well as
the ontology of the CPS module. The choice of sufficient static is
driven by the data required by central system. In other words, the
vocabulary, i.e., the terms defined by the central system, decide the



Figure 6. Information model contains structural, description and process
models.

system boundary. This is ensured by defining the interacting variable
in the upper ontology of an assistance system and the CPS module
importing it.

For example, the central system may need the total number
of parts for each part on the assembly station from an inventory
module. This is the interacting variable for the CPS module.

C. CPS Intelligence

Once the system boundary is known, i.e., the interacting variable
for a CPS module, it is necessary for the CPS to be intelligent
enough to calculate this information from raw sensor readings.
This intelligence is manifested in the accuracy/update frequency of
sensors and the computational power afforded by the hardware (e.g.,
Raspberry Pi or Arduino) used to create the CPS module. Calculation
of the value of the interacting variable effectively sets a lower bound
on this system intelligence, i.e., a CPS should be able to process the
data received through sensors to communicate the interacting variable
whenever it is needed by the central system, e.g., calculating moving
average of raw data every millisecond. The system intelligence can
further be improved by using more sophisticated hardware and/or
applying better algorithms while processing data, which improves the
quality of the values calculated by the CPS module for the interacting
variable.

Also, note that the CPS module should have the computational
power to use ontologies during run-time. However, the restrictions
placed by this requirement are mild because ontologies can be made
light-weight during run-time [11].

D. Developing the Information Model & Ontology

After deciding on the hardware to use for a module, an informa-
tion model which is an abstraction of the physical layer is created
based on the structural and description models of the physical units
present in a CPS module (as shown in Figure 6). The structural model
defines physical assets present in a module: it lists all sensors, compu-
tational units, communication units and relations between them. The
description model describes the properties of these assets. The process
model is the process description that exists in the central system and
is not changed on addition/removal of CPS modules. Structural and
description models of the information model are used to explicitly
define the hardware that was decided in the above steps. Figure 6 also

shows the structural and description models of an inventory module
and the process model contained by the central system.

The ontology of a CPS module is developed using the information
model as a reference. In addition to the entities and relations defined in
the information model, the ontology may also contain variables which
are the result of processing the data gathered by sensors. Finally,
the interacting variable(s), which were decided while determining
the system boundary, are added to the ontology with appropriate
relationships with other entities.

Figure 7. The information model (top-left), which is based on the physical
setup of the system, is used to design the ontology (top-right) during the
design phase. During implementation of the model, in the deployment phase,
the sensors in the information model produce some raw data. This raw data
is preprocessed by the CPS module (this is where system-intelligence comes
into play) and is made ready for the ontology.

E. Ontology Integration

In the final step, ontology of the CPS module is merged with
the central system ontology. The central system uses the interacting
variable for making its own decisions, but also acts as a database for
the complete assistance system during run-time. The modules, hence,
can query the central system for not only the interacting variables of
other modules, but also about the internal entities, which the central
system does not explicitly use. The problem of how can the CPS
modules be made aware of the various entities which can be accessed
is addressed next.

As discussed before, the interacting variables are described in an
upper ontology and a mid-level ontology contains descriptions of the
entities of all modules. To help the ecosystem develop, a committee
which consists of all shareholders (central system designers, deploy-
ment point managers, module developers, etc.) which oversees the
addition to new modules to the ontology would be needed. The upper
ontology is kept minimal and is only extended with new interacting
variables, i.e., when a new potential CPS module is identified which
can aid the intelligence of the central system. The other entities which
can be provided by the new module, but which are not needed by the
central system, are described in the mid-level ontology. The mid-level
ontology acts as a repository of all relevant entities described in all
CPS modules. This simplifies the search by engineers for variables
provided by other modules. CPS modules <<import>> the upper
ontology to get the URIs/IRIs of interacting variables and mid-level
ontologies to get the URIs/IRIs of the entities of all modules.

Instead of having a mid-level ontology, it is possible to have
only an upper ontology and ontologies of CPS modules. In such
a setting, if one module needs to query for the variables of other
CPS module, it then <<import>>s the ontology of that particular



module. However, this scheme of ontology development may result
in reinvention of entities. Thus, a centralised W3C committee like
setup [32] which consists of all stakeholders is favoured.

V. ECOSYSTEM OF ONTOLOGIES

This section describes two possible ways of creating and main-
taining ontologies for a complete assistance system. These ecosystems
can be classified mainly into the two following ways:

A. Decentralised scheme of ontologies

In this section, a decentralized organizational scheme for the
ontologies is described. As shown in Figure 8, upper ontology of
assistance system is designed. To recap, upper ontologies of modules
are created from their information models. CPS module ontology
is described using its information model. These upper ontologies
consists of definitions of entities and relationships between them.

Figure 8. Schematic description of a decentralized ecosystem of ontologies.

So, the basic vocabulary described by upper ontology of assis-
tance system is imported by the modules’ ontologies. As information
model maps all possible data, inventory module upper ontology
contains definitions which are needed for the inventory module itself,
but are not required by the central system ontology. An example
of this can be position of container (x, y, z). This allows for
flexibility in implementation of inventory module. If another module
requires data regarding container position, ontology of that particular
module can import the inventory module ontology.

Pros & Cons. This design focuses on building a completely de-
centralized system. The central system’s ontology only contain the
minimal taxonomy of entities and properties which are necessary for
the Central System to function, i.e., be able to use the information
from the modules effectively. However, the individual modules are
free to report any variable which they can measure and to report it to
the central system. The central system will store that information even
if it may not have explicit uses for the variables but can produce this
knowledge if a different third party module requests for it through
SPARQL queries.

However, such a setup has the disadvantage that indepen-
dent teams may reinvent properties independently and since these
properties will have unique IRI (e.g., TeamA:hascoordinateX,
TeamB:hasX and TeamC:hasPositionX) but with the same
semantic meaning. This would complicate interoperability across
modules and for the same information from different inventory
modules the a new module would have to query independently.

Figure 9. Example of possible reinvention of entities with same semantic
meaning.

Figure 9 shows an example of such a situation where teams A, B
and C independently define the variable for position of container
as hasCoordinateX, hasX and hasPositionX. On the other
hand, if the teams follow a particular nomenclature for defining
variables would avoid reinventing similar variables which reduces the
number of both imports and queries. Consolidation of the property
names may also suffer due to the Not-Invented-Here syndrome [42].

A more subtle, and potentially more dangerous, side-effect of
this design is compromised security of the data stored in the central
system. In this design, the central system is completely unaware to the
features which are being developed by independent modules. Hence,
the central system needs to be excessively permissive when it comes
to allowing arbitrary SPARQL queries by third party modules. A
malicious module can very easily take advantage of vulnerability to
obtain data on the central system.

B. Centralised scheme of ontologies

This section describes a centralized organizational scheme for
the ontologies. As shown in Figure 10, upper ontology of assistance
system is created which consists of the basic vocabulary for the
complete system. Then a mid-level ontology is created. This mid-level
ontology imports the upper ontology of assistance system. Further,
the mid-level ontology describes the entities of all other modules.
Depending on the engineers describing the mid-level ontology, all or
some of the significant entities used by other modules are defined in
the ontology.

The idea behind creating a mid-level is to create a repository of
all relevant entities described in any CPS module. This simplifies
the search by engineers for variables required by other modules.
Mid-level ontology collects entities and their definitions described by
upper ontologies of modules to facilitate exchange of data and this
differentiates the approach from the previous approach. An assistance
system upper ontology defines the minimal variables requires by
modules to send data to the central system. This ontology is governed
by the highest level committee and usually changes to it will be made
when new modules are attached to the assistance system. On the other
hand, modifications can be done easily in mid-level ontology which
gives engineers the freedom to extend and access variables.

All modules’ upper ontologies import the mid-level ontology. All
modules need to import the mid-level ontology only once as it has
all entities defined in the complete system.



During the design of the module, the interacting variable(s) were
added in the upper ontology while the mid-level ontology was updated
to include all entities which the module could provide, as agreed by
all the stakeholders. For the purpose of exposition and to maintain
complete generality, it is assumed in this section that the developer
creating the module is a third party who intends to develop a newer
version of the module from the specification.

Figure 10. Schematic description of centralized ecosystem of ontologies .

Pros & Cons. In comparison with the more decentralized structure
given in the previous section, the benefits and costs of this design
are apparent. First of all, the mid-level ontology can be viewed
as a white-list of entities and properties which can be read from
the central system during execution through SPARQL queries. This
prevents reinvention because a cursory check through the mid-level
ontology will show that the properties already exist for the module
being developed. Further, each module can individually extend the
entities imported from mid-level ontology. These extensions are local
and are not propagated to the mid-level ontology, thus, modules may
again reinvent variables. These extensions can be made directly in the
mid-level ontology to avoid reinvention on the next level. However,
whether these extensions should be a part of the mid-level ontology
is not discussed in detail in this work and can be seen as a future
work.

Because of the white-list provided by the mid-level ontology,
the central system can also put in place a system for authorizing
certain (known) modules to have access to information which is
not available to other modules. This allows security sensitive data
to be inaccessible from potentially malicious or unknown modules.
The exact authentication mechanism will depend on public key
cryptography [43], which is out of scope of this work.

Pair-wise collaboration of teams is not encouraged in this setup.
This can be a potential downside of the organizational scheme. This
may increase the development time for a particular module if the
properties it needs to import are not in the white-list already and the
decision and procedure of whether to add these properties might take
longer compared to the previous design scheme.

Based on the discussion is this section, centralized structure of
ontolgies with mid-level onotlogies is selected for development of
CPS module for the proof of the concept.

VI. MODULE DEVELOPMENT

This section describes at a high level the development of a CPS
module and the central system after the design for the module has

Figure 11. Ontology development of CPS modules.

been included into the upper and mid-level ontologies. During the
design of the module, the interacting variable(s) were added in the
upper ontology while the mid-level ontology was updated to include
all entities which the module could provide, as agreed by all the
stakeholders. For the purpose of exposition and to maintain complete
generality, it is assumed in this section that the developer creating the
module is a third party who intends to develop a newer version of
the module from the specification.

In the next step towards development of the module, on the
one hand, the developer (say, Dev. 1) studies the capabilities of
the hardware available to her. Here, the developers can leverage the
information model and ontology created during the design phase. On
the other hand, the developer studies the upper (mid-level) ontology
to determine what entities/values they should (could) provide to the
central system. This part of the development process is illustrated
in Figure 11(a). It should be noted that there is no need for
communication or synchronisation between the developers of the
different modules or between the developers and the central system
developer. The developer <<import>>s the upper and mid-level
ontologies and creates the module ontology with the remaining (local)
ontological entities, and writes code which uses the central system’s
Application Programmable Interface (API) and SPARQL queries to
update the central system database (as shown in Figure 11(b)).

Lastly, it is advised that Protégé should be used to create the
module ontology as (i) it enhances interoperability by using OWL-S,
and, (ii) it can automatically generate code using OWL API, which
can ease the burden on the developer.

In this work, Protégé is used to create ontologies and the code
generated is used to update the ontologies. Figure 12 shows an
ontology created in Protégé and Figure 14 shows code generated by
the API. In the next section, simulation of the central system and an
inventory CPS module using Protégé is discussed.

VII. IMPLEMENTATION

This section describes implementation of a CPS module devel-
oped during this work. An inventory module as shown in Figure 1 is
attached to the assistance system. The hardware implementation deals
with reading data from sensors and RFID tags, processing the data
and sending the required information to central system of assistance
module. Sensor data and part information from RFID tags are used to
provide information about the part in each container. In the presented
scenario, Rapsberry Pi (RPi) attached to weighing module provides
information about part name, total number of parts contained in each
container and change in the number of parts for each container to a
central system. RPi also sends a message to signal low inventory for
parts if number of parts in a container drops below a threshold level.



Figure 12. Example of classes and their relations as described in Protégé.

Figure 4 shows the setup of weighing module used in implemen-
tation. Weighing module has three weighing sensors with container
kept on each sensor. Further, an RFID tag is attached to each bin.
RFID tags contain data regarding parts, for example type of part, part
name which can be read by RFID readers kept on weighing sensors
as shown in the Figure 4. However, it is noteworthy that there is a
scope of human error in this scenario as the part details are entered
manually and while filling the container it should be ensured that
container has the corresponding parts. This, indeed, can be one area
of further improving the system and making it error proof.

This section discusses various hardware and communication
choices available for implementation and makes recommendations
based on the issues faced chronologically during implementation.
First, different hardware options and procedures are discussed fol-
lowed by communication between the central system and the inven-
tory module and a few implementation recommendations are made.

A. Hardware Design

As discussed in Section I, an assistance system consists of a
central system and CPS modules. In this implementation, weighing
modules are the only kind of module attached to the central system.

Calibration of the sensors avoids any discrepancies in weights.
Calibration follows a procedure wherein are given to calibrate the
weighing sensor against dead-load. Since each sensor has a standard
container and an RFID reader, the weights of these two entities
are included in the dead-load of weighing sensor for the ease of
calibration procedure. Including the weight of container and RFID
reader in dead-load would lessen the complication in finding the
number of parts as the weighing sensor will report only the weight of
parts as opposed to the weight of the whole setup. However, weight of
container is still a data node in our information model and ontologies
in order to capture as much data as possible.

Figure 13. Example of definitions of command bytes.

This software implementation can be done for a micro-controllers,
a Raspberry Pi (RPi) or a computer. RPi has more computational
power than micro-controllers. It also has lower cost & lower power
consumption than computers and is easy to use for programming.
Hence, RPi was used for the implementation.

HEAD | L | x | C | END
Listing 1. An schematic layout of an encoded message to the weighing module.
See Figure 13 for an explanation of each part of the command.

The inventory module uses communication protocol RS485
whereas the de-facto protocol for computer communications is
RS232. There are multiple ways of converting RS485 signals to
RS232. An RS485 shield, which sits on RPi, receives voltage
corresponding to RS485 and converts it RPi standard I/O voltages, is
used in the implementation.The inventory module uses a LAN (RJ45)
cable to power and to send/receive data to RPi.

A Python program is written to calibrate the module. Raw data
from sensors are read in hexadecimal form and is converted to decimal
for the ease of reading and understanding. The program sends byte-
encoded messages to the sensor which responds by sending bytes
back. The byte code message for different commands are provided



as the documentation for invnetory module. The documentation and
code written for reading sensor data are provided on GitHub [44].
The module works on the principle that it gets a predefined encoded
message from the user/RPi and depending on the value of message
it returns the desired bytes. Listing 1 shows the general encoding
of messages to/from sensors. Definitions regarding the command are
provided thereafter in Figure 13.

Part information is read from RFID tags which are placed at
the bottom of containers. RPi collects the data from sensors, part
information from RFID tags and extract information regarding total
number of parts and change in number of parts for each container.
Python code also incorporates the detail of inventory threshold for
each part. If inventory for a part goes below this threshold, a flag is
raised to signal that refilling of parts is required.

B. Software Design

In the previous section, the development phase of ontologies was
discussed. In this section, the simulation of an assistance system
during run-time is discussed. The simulator in our implementation
consists of two parts: a Python program for the central system and a
Java program for an inventory module (see Figure 16) for the setup.
The communication between the module and the central system uses
ZeroMQ [45] and can be transparently done on a single machine or
multiple machines. The details of the communication will be given
in the next section.

Assistance system ontology is developed in Protégé, a free, open
source ontology editor. The code generated via OWL API using
Protégé (as shown in Figure 14) is used to simulate the behaviour
of the CPS module. This implementation is written in Java. During
execution, the ontology is populated by creating individuals locally on
the module during execution. The central system may answer queries
sent to it in SPARQL or may provide it using an alternate API. How-
ever, the use of unique URIs/IRIs to refer to entities in the ontologies
is crucial to facilitate interoperability in all implementations.

Figure 14. Classes generated by Protégé, based on OWL API. Central system
discussed in the paper is referred to as Brain.

C. Communication Design

During execution, the system goes through three primary stages:
(i) intialization, (ii) trigger, and (iii) update, which are shown in
Figure 15, and are briefly discussed here:

• Initialization. When an assistance system is started, the
central system sends an init() request to all CPS modules
attached to it. This request contains the URI/IRI of the
central system. This URI/IRI is address with which all
modules identify the central system through the lifetime
of the process. In case of hardware malfunction, system
restart, or when a new module is attached to the system,
the initialization step is executed again.

• Trigger. Triggers can be either timer-driven or event-based.
Event-based triggers are reported by CPS modules to the
central system whereas timer-driven triggers are generated
by the central system. Event-based triggers can be events that
change the present state of a system to another (valid) state
of the system [9]. In case an event occurrence renders no
valid state of the system, triggers are not generated. Trigger()
request is either sent from modules to the central system, as
shown in Figure 15, or may be generated internally by the
central system clock.

• Update. Communication between the central system and
CPS modules is pull-based. Upon a trigger, the central
system sends a getUpdate() request to all modules. Modules
send the complete, or a part of, ontologies with the new data
values to the central system which, in turn, update its own
ontology.

Figure 15. Communication between the central system and CPS modules.

An example implementation is available for download on
GitHub [44]. The implementation therein simulates an inventory
module (using code generated from Protégé), a central system, and
then simulates human actions, updates the ontology on the inventory
module using the OWL API, and shows the communication between
the module and the central system.

D. Additional Recommendations

The inventory module must be developed keeping in mind the
failures and errors that might happen while deploying the system.
Thus, the system must have certain properties which make it error
proof. Intertwined with the desirable properties of the system, some
practical recommendations regarding implementation are also made in



this section. The inspiration for these recommendations comes from
design of concurrent systems [46].

Safety property asserts that nothing bad happens. The foremost
requirement to implement this property is the system should not be
in an invalid state at any point in time. For CPS, it means that the
module should never report values which are not computed from its
sensor values. A discrepancy may result from the scenario that the
module reports a value to the central system after it has probed one
sensor but before probing another sensors, if the report contains values
which were computed using both the sensor’s readings (one of the
sensors may have out-dated value). An invalid state can also be a
deadlocked state where there are no outgoing transitions, such as
an error state. Semaphores, mutex and locks should be judiciously
used during development to avoid such scenarios. As a side-note,
handling missing values (which is a subset of error states) gracefully
is a potential future extension of the work.

Liveness property asserts that the system will perform its intended
use eventually. In other words, liveness means that the system will
continue to make progress. This implies ensuring that the semaphores
and mutexes will be unblocked and the module will, eventually, send
data to the central system. Though several race conditions can be
avoided simply by using atomic operations exclusively, it is possible
to end up in a live-lock. Say the module has a hard parameter which
controls after how long a sensor’s data is considered stale. Then say
the module reads data from one sensor, and then while it is reading
data from another sensor, the data from the first sensor becomes stale.
So, the module will go back to re-reading data from the first sensor
and in the meanwhile data from the second sensor becomes stale.
This could bind the module into a sensor reading infinite loop. During
implementation, such situations should be carefully thought about and
the liveness of the module should be tested/verified under the most
extreme of conditions.

Encapsulation is another way of making system more reliable.
Encapsulation is restricting direct access of software components
so that they cannot interfere with other subsystems or privileged-
level software. It keeps faults from propagating which increases the
reliability of the overall system.

Finally, in case everything fails, a watchdog timer (or a Heart-
beat) can be used to detect the catastrophic failures and recover from
it. The timer is regularly reset by computer during normal operation,
but it timeouts if there is a hardware or software error. The timeout
signal initiates a corrective measure by placing the system in a safe
state or restoring normal operation. One of the ways this can be
accomplished is by using a Hypervisor [47] which can simply restart
the entire module in case the timer timeouts.

These are some necessary properties that the system must have,
but not sufficient to ensure that it functions properly. In the end, the
deployment and user feedback would be the final test of the module.

VIII. CONCLUSION

This work is focused on designing a human-centric assistance
system used in production which can dynamically adapt to the
needs of the workers and tasks using Semantic Web technologies.
Assistance systems are considered as consisting of a central system
and one or many CPS modules. An SDI framework is proposed to
design CPS modules which makes the data of the complete system
globally accessible by the virtue of HTTP URIs/IRIs. The SDI

framework explained the steps used to decide the boundary between
the central system and CPS modules, the performance requirements
of hardware, describing modules with the help of information models
and finally developing and merging ontologies. It also explains the
ecosystem of ontologies consisting of upper, mid-level and module
ontologies. Hardware and software implementation of an inventory
module is completed. For the inventory module, the framework is
implemented in Protégé using OWL-S. OWL API is used to simulate
CPS behaviour and data exchange is demonstrated. Communication
between a CPS module and the central system is also described.
However, the proposed framework can be used to design CPS in
general: the discussion in the paper was limited to designing a CPS for
an assistance system for ease of both exposition and demonstration.

The work assumes that all vendors and third party development
use SPARQL as the query language. Calbimonte et al. have discussed
how such a problem of multi-vendor multi-querying language can be
resolved [48]. It can be incorporated in the SDI framework to make it
more robust. Knowledge mapped in ontologies may evolve over time
due to modifications in conceptualisation and adaptation to incoming
changes. Thus, in future, it is important to establish protocols for
versioning of data on Semantic Web as well as understanding the
missing data [49]. Another non-trivial task towards adoption of
ontologies in real life is setting up committees which oversee the
creation and maintenance of upper and mid-level ontologies [50].

The framework results in a repository of data from all modules
of the system and interoperability between these modules, thus,
laying the foundation of plug-and-play production systems. The next
important step in the development of assistance systems is to develop
a plug-and-play methodology for CPS modules, as alluded to in
Section III.

Another important step to make the system deployable is to
create global standards: either by defining design and communication
standards specific to assistance systems, or by investigating the
suitability of existing standards, e.g., RAMI 4.0 [51].
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[28] M. Obitko and V. Jirkovskỳ, “Big data semantics in industry 4.0,”
in International conference on industrial applications of holonic and
multi-agent systems. Springer, 2015, pp. 217–229.

[29] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data: The story so far,”
in Semantic services, interoperability and web applications: emerging
concepts. IGI Global, 2011, pp. 205–227.

[30] A. Schultz, A. Matteini, R. Isele, P. N. Mendes, C. Bizer, and C. Becker,
“Ldif-a framework for large-scale linked data integration,” in 21st
International World Wide Web Conference (WWW 2012), Developers
Track, Lyon, France, 2012.

[31] V. Gezer and S. Bergweiler, “Cloud-based infrastructure for workflow
and service engineering using semantic web technologies,” International
Journal on Advances on Internet Technology, pp. 36–45, 2017.

[32] S. Bechhofer, “Owl: Web ontology language,” in Encyclopedia of
database systems. Springer, 2009, pp. 2008–2009.

[33] E. Negri, L. Fumagalli, M. Garetti, and L. Tanca, “Requirements and
languages for the semantic representation of manufacturing systems,”
Computers in Industry, vol. 81, pp. 55–66, 2016.

[34] N. Guarino, Formal ontology in information systems: Proceedings of the
first international conference (FOIS’98), June 6-8, Trento, Italy. IOS
press, 1998, vol. 46.

[35] I. Niles and A. Pease, “Origins of the ieee standard upper ontology,”
in Working notes of the IJCAI-2001 workshop on the IEEE standard
upper ontology. Citeseer, 2001, pp. 37–42.

[36] J. F. Sowa et al. Building, sharing, and merging
ontologies. Retrieved on 2018-09-20. [Online]. Available:
http://www.jfsowa.com/ontology/ontoshar.htm

[37] R. Hoehndorf, “What is an upper level ontology?” Ontogenesis, 2010.
[38] E. Beisswanger, S. Schulz, H. Stenzhorn, and U. Hahn, “Biotop: An

upper domain ontology for the life sciences,” Applied Ontology, vol. 3,
no. 4, pp. 205–212, 2008.

[39] J. F. Sowa et al., Knowledge representation: logical, philosophical, and
computational foundations. Brooks/Cole Pacific Grove, CA, 2000,
vol. 13.
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