MASTER THESIS

Modular and Adaptive Assistance System for Manual
Assembly — Engineering a Semantically Described

CPS Module

Wo =

MASTER THESIS

Modular and Adaptive Assistance System for Manual
Assembly — Engineering a Semantically Described

CPS Module

Bearbeiter: Amita Singh
Betreuer: Dipl.-Ing. Patrick Bertram
Prifer: Prof. Dr.-Ing. Martin Ruskowski

Erklarung

Hiermit erklare ich, daB ich die vorliegende Studien-/Diplomarbeit selbstandig und ohne
unerlaubte, fremde Hilfe angefertigt habe. Textabschnitte oder Bilder, denen fremde
Quellen zugrunde liegen, enthalten Hinweise und sind im Literaturverzeichnis kenntlich

gemacht.

Kaiserslautern, den 30. August 2017

Modular and Adaptive Assistance System for Manual Assembly - Engineering a
Semantically Described CPS Module

Contents

Contents
(1__Introduction| 2
[2" Research Topid 4
-of-the- 6
(3.1 Industry 4.0 7
[3.2 Smart Factoryl 8
[3.3 Human-in-the-loop| 9
[3.4 Manual assembly stations| 10
[3.5 Assistance System| 10
[3.6 Ontologies| 14
[3.6.1 Upper Ontologies| 15
[3.6.2 Mid-level Ontologies| 16
[3.6.3 Representation of Ontologies| 17
[3.6.4 Structure of Ontologies in Protége| 22
[3.6.5 Ontology Integration|. 27
[3.6.6 Ontology Conflicts| 29
[3.6.7 Temporal Dynamic Ontologies|{. 30
[3.6.8 Importance of Ontologies in Context of Industry 4.0 30
({4 Methodology| 32
35
b1 Frameworkl 35
[5.1.1 Objectivel 36
[5.1.2 System boundary|. 36
[5.1.3 System intelligence|. 37
[5.1.4 Developing information model & ontology| 38
[5.1.5 Merging ontologies|. 39
5.2 Model Development| 42
Modular and Adaptive Assistance System for Manual Assembly - Engineering a [l

Semantically Described CPS Module

CONTENTS

[5.2.2 Weighing module ontology|.
(5.3 Implementation in Protége
[5.3.1 Implementation of decentralized organizational scheme|/.
[5.3.2 Implementation of centralized organizational scheme|
5.3.3 Deployment|

[6 Tmplementation|
[6.1 Hardware Design|
[6.2 Communication Design|

77
79
80

Modular and Adaptive Assistance System for Manual Assembly - Engineering a
Semantically Described CPS Module

Abstract

Assistance systems are used in production facilities to help workers during assembly. An
assistance system consists of a central system and one or more CPS modules. CPS
modules collect data from environment through various sensors and provide information
to the central system. However, to fully extract the benefits of an assistance system, it
is important that CPS modules can exchange data between them. This work provides a
framework to design CPS modules and describe it semantically for interoperability across
modules. The framework is then used to show how to design a weighing module for an
assistance system, how to semantically describe it, and how to allow interoperability with
other modules.

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 1
Semantically Described CPS Module

1. Introduction

An ever growing catalogue of products by companies, which may be relatively minor
customization for different consumer segments, has trickled down to the number of
variants being produced by the production facility. On the one hand, increasing global
competition has led to low costs and shorter life-cycles and, on the other hand, changing
demographics in many parts of the world has resulted in increasing labour costs which
makes it difficult for manufacturers to compete in the market.

Also, the fluctuating demand makes it extremely difficult for the automotive sector to
have a static set up as it is incapable of accommodating variations in production line-up.
Automation is one plausible solution to reduce the labour costs in production. However,
existence of a high number of variants makes it difficult for engineers to automate the
process since setup of the facilities would require frequent change. This gave rise to the
demand of reactive and proactive system that can respond to dynamic changes in the
markets and has led to a number of changes in production facilities all across the world.

The emergence of multi-agent cyber-physical systems is the result of this demand. These
agents help the production system be modular, decentralized, flexible and changeable in
order to adapt to changes in product demand.

Since these agents cannot manage and resolve unforeseen situations in a production
facility, they can be used to help workers in their task. An assistance system is being
developed at SmartFactory®" to help workers in deciding which step should be taken
next in the assembly process. An assistance system is a multi-modal CPS which collects
data with the help of sensors in different forms and decides the next step based on this
information.

The aim of my thesis is to study the process of attaching a weighing module to the
assistance system and develop a framework that helps interoperability of data among
CPS modules. This can be seen as providing the guiding principles for allowing data
collected by one sensor to be used by other modules.

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 2
Semantically Described CPS Module

CHAPTER 1. INTRODUCTION

One way of facilitating exchange of data is through ontologies. A framework for de-
signing ontologies of the attached modules and exchanging data is described next. This
framework starts with defining the parameters to gauge the effectiveness of adding a
module, followed by defining the scope of modules and their intelligence. In the next
step, an information model is developed and an ontology is created. In this last step,
communication between the central system and modules is described.

The thesis is divided into 5 main chapters. Chapter [2| describes and motivates the
research problem, i.e. interoperability between CPS modules. Chapter [3] describes the
key ideas behind smart factories and assistance systems and discusses the state-of-the-
art. Chapter [4] describes the methodology adopted to solve it and, the detailed solution
is laid out as a framework in Chapter 5] Chapter [6] deals with the design choices which
need to be made during implementation of such a system. The thesis concludes with the
limitations of the suggested solutions and with discussion of the possible future work in
this area.

2. Research Topic

Pérez et al. [Pér+-15] in their paper talk about adaptive production systems where workers
can perform work aided by machines. These adaptive systems treat automation as an
enhancement of worker's physical and cognitive capabilities. Manual assembly stations
being developed by smart factories are one such example of adaptive automation.

The assembly stations are equipped with assistance systems in order to ease the assembly
process for workers. These assistance systems help workers by showing the next step to
be taken in the process. It consists of a central adaptive system and CPS modules
thus making it both adaptive and modular. These modules measure different aspects
and parameters of environment, for example, a hand tracking module or an eye tracking
module can track the position of worker, a weighing module can give information about
number of parts, a RFID tag reader can track the status of products, etc. The central
system can be made more aware of the worker’s environment by addition of such CPS
modules. This will allow it to help workers more effectively.

The modules being developed follow the principle of plug-and-produce which requires
them to be smart and adaptive themselves as well. Plug-and-produce is one of the key
paradigms of Industry 4.0 as it facilitates the addition or removal of CPS modules as
required for the automation of a process. Quint et al. [Qui+16] talk about such an
assistance system developed by SmartFactoryX" and describe its system architecture.
However, to fully exploit the benefits of such an assistance system, it is important that
one CPS module can access data provided by other modules.

This is the gap | intend to fill with my thesis by developing a semantic model for different
modules attached to an assistance system which may have heterogeneous data. For
modules to be able to understand and exchange data, it is necessary that they have the
same vocabulary. For this purpose, developing a semantic description of the modules is
necessary. Once the semantic description of these modules is set, they can be developed
in-house or independently by third-parties. To the best of my knowledge, this area has

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 4
Semantically Described CPS Module

CHAPTER 2. RESEARCH TOPIC

not been explored by researchers, specially in the context of cyber physical production
systems.

In this thesis, a concept for designing modules which can facilitate interoperability of data
will be proposed. Further, a framework will be developed to help engineers semantically
describe a CPS module and provide guidance to engineers on how to add modules to
an assistance system. Some practical suggestions regarding design choices during imple-
mentation (i.e. both during semantic description and development of the prototype) will
be given while using a weighing module as a use case. A part of the implementation
of a weighing module will be covered. Other avenues that this thesis opens will also be
discussed briefly as future work.

3. State-of-the-art

The vision of CIM (Computers in Manufacturing) of creating completely automated facto-
ries could not be realized due to the complexity involved in production processes [Zue08].
The effort to implement CIM made it clear to engineers that completely automated fac-
tory is not a plausible solution as per the state-of-the-art. Humans are an indispensable
part of production systems but automation at different stages of product is a necessity
and a practical approach to the problems of increasing product variants, reducing product
life-cycle and rising labour costs [Rom+15].

Production facilities are focusing on cyber-physical systems (CPSs) that can interact
with human through many modalities. CPSs are a combination of interacting embedded
computers and physical components. Both computation and physical processes work
in parallel to bring about the desired output. Computers usually monitor the physical
processes via sensors in real-time and provide feedback to actuators [Lee08; Jaz1l4]. A
CPS consists of one or more micro-controllers to control sensors and actuators which
are necessary to collect data and interact from its environment. These systems also
need communication interface to exchange data with other smart devices and a cloud.
According to Jazdi [Jaz14] data exchange is the most important feature of cyber physical
systems. CPSs connected over internet are also known as Internet-of-Things.

Lee, Bagheri, and Kao [LBK15| in their paper proposed a 5C level architecture which
defines functionalities of CPS very adequately. The levels of 5C architecture are: (i)
smart connection which can be a sensor network, (ii) data-to-information conversion
level in which meaningful information is inferred from data collected by various sensors,
(iii) cyber level which connects all machines to each other and transfers information
to other machines, (iv) cognition which deals with proper presentation of the acquired
knowledge and, (v) configuration level which takes feedback from physical and cyber
levels and acts as a supervisory control to make machines self-configurable and adaptive.

With the increasing sophistication of actuators and sensors available in the market,

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 6
Semantically Described CPS Module

CHAPTER 3. STATE-OF-THE-ART

availability of data has increased many folds. The CPSs used to create flexible and
re-configurable production systems called Cyber-Physical Production Systems (CPPSs).
CPPSs are build on the principle of modularity and decentralized control. Thus, these
modules are loosely coupled with each other.

3.1 Industry 4.0

Industrial revolutions occur with new inventions that lead to the change of infrastructure
and economy. The first industrial revolution is marked by the invention of coal and steam
engine which led the transition from hand tools to machine tools. Second Industrial
Revolution is characterized by centralized electricity, improved communication media,
rail-road networks, improved water supply and use of oil and fossil fuel. Production line
for mass production were introduced in this era. This industrial revolution was built on
fossil fuels, but the need for new energy resources was eminent due to depleting resources
and dangerous levels of CO2 emissions from factories. Advent of internet and renewable
energies facilitated a new infrastructure ushering the Third Industrial Revolution [Rif11].
Computers were introduced on factory floors that propelled automation in manufacturing
sector. The Fourth Industrial Revolution focuses on modular, decentralized cyber-physical
systems which can interact with each other and humans in real time, thus resulting in
flexible production systems.

The term Industry 4.0 refers to the fourth revolution in manufacturing industry. The
concept of Industry 4.0 was motivated by smart, modular and adaptive production sys-
tems with decentralized control [HPO16]. Its vision is to bring automation in the field of
production and help combat the problems of increasing catalogue and labour costs. The
information and communication technologies have trickled their way down to the produc-
tion systems, paving the way for monolithic production systems to become modular and
have decentralized control architectures. It is one of the most significant directions in
computer science, information & communication technologies and manufacturing tech-
nologies. Industry 4.0 is characterized by a paradigm shift from centrally controlled to
decentralized processes.

The core idea of Industry 4.0 is to integrate information technologies to operate busi-
ness and engineering processes in a flexible and efficient with constantly high quality
and low cost. The main feature of Industry 4.0 is horizontal, vertical and end-to-end
integration. Horizontal integration facilitates inter-corporation collaborations of value
networks, vertical integration enables information flow through hierarchical subsystems

CHAPTER 3. STATE-OF-THE-ART

in a production system resulting in more flexible and re-configurable production systems
and end-to-end engineering integration enables engineers to foresee the effect of product
design in production and services through software tools [Wan+16].

3.2 Smart Factory

Smart factories aim at the development, application and distribution of innovative, indus-
trial plant technologies and create the foundation for their widespread use in research and
practice . Research therein generally focuses on the use of innovative information
and communication technologies in automated systems and deals with design challenges
of such systems.

% Manufacturing Plant Global Facility Insight

a a
I
Manage equipment remotely using |
sensors and limits to conserve ‘ ﬂ
=]

energy and reduce costs

Moniter production flow in real-time
to eliminate wasted time and reduce
in-processinventory

Automated
Inspection

Production lina
triggers autonomous
material handling
vehicles

RFID sensors
identify
productand
materials

T 1]

, | @
Implementcondition- || Aggregate product and)
i based maintenance | processdata, analyze, -
.| alertstoreduce identify constraintsand |, ...
downtime and improvementareas

increase throughput

Source: @MicrosoftloT in Manufacturing infographic, 2015

Figure 3.1: Shows an example of product and data flow in a Smart Factory. Product car-
ries RFID tag which contains product information. Inspection and inventory
triggers are automated. Source: MicrosoftloT in Manufacturing Infographics,
2015.

They use smart, decentralized, modular and adaptive CPS. These CPSs reduce complexity
in the production system by strict modularization on all levels of automation, decentralized
control architectures and loose coupling between modules. These modules are thus

CHAPTER 3. STATE-OF-THE-ART

robust, adaptive and can self organize by negotiating among themselves. Smart factories,
thus, can be seen as a hybrid production facility.

As shown in Figure 3.1} smart factories differ from traditional factories in their re-
configurable layout in contrast to the fixed line where each machine is tailored for a
specific job. In a smart factory, machines are smart CPS modules which can be reconfig-
ured as per requirements. The machines and information systems in smart factories are
extensively connected and have decentralized control architecture which help CPS mod-
ules to negotiate with each other to organize to cope with system dynamics. Products in
smart factories follow dynamic routing as opposed to fixed routing in case of traditional
production lines. On the contrary, machines in traditional factories have a specified role
and they perform functions assigned to them. Smart factories also make it possible for
smart devices to collect data. This data can be processed for insights and training pur-
poses, whereas in traditional factories, the data, if collected, is not well connected to
cloud and thus is not efficiently used [Wan+-16].

3.3 Human-in-the-loop

Computers in Manufacturing (CIM) established that it is important that the CPS systems
developed should help humans instead of trying to replace them because with the current
state of the technology it is difficult to replicate human cognitive skills. This has lead to
human-centric workplaces. This approach to production was coined human-in-the-loop.

In complex production scenarios, the symbiotic man-machine systems are the optimal
solution. This change in the nature of human-machine led to the paradigm shift from
independently automated and manual processes towards a human-automation symbiosis
called human cyber-physical systems. These systems are characterized by collaborative
effort of workers and machines and aim at assisting workers being more efficient and
effective [Rom+15]. These systems are based on a trusting and interaction-based rela-
tionship, which has human supervisory control and human situation awareness, leading
to adaptive automation to improve knowledge of worker and help the process. Human-
system interaction is an indispensable part of the production systems and acts as an
enabler of the intelligent decision making process [GBA15].

Since operators are to be kept in the production system, as discussed, it is important that
they are equipped with smart devices which can help them in their work. This evolution is
called Operator 4.0 and is characterized by smart and skilled operators who can perform
work aided by machines. The earlier generations are Operator 3.0 where humans work

CHAPTER 3. STATE-OF-THE-ART

in collaboration with robots and machines, Operator 2.0 deals with humans assisted
by computer tools like CAx tools and NC operating systems, Operator 1.0 represented
manual and dexterous work aided by only mechanical tools [Rom-+16].

3.4 Manual assembly stations

Earlier, automation was considered a plausible solution to the problem of increasing
variants and labour costs. However, it was soon clear that fully automated production
facilities were not the solution in the current scenario because such facilities would be
inflexible and, thereby, expensive. Neither traditional nor fully automated systems can
respond effectively and efficiently to dynamic changes in the system [Lei09]. Hence,
workers should be assisted, as needed, in their work thus including automation with
human aptitude as a trouble shooter. Manual assembly stations with assistance systems
are developed based on this concept.

Traditionally, a manual assembly line consists of a sequence of stations. These stations are
modular units, one in the chain of many automated/semi-automated stations. Products
are assembled by workers at each station. Usually, production facilities are one piece
flow. Depending upon the assembly plan of a product, one or more processes can be
performed on a station.

Figure 3.2 shows a schematic description of such an assembly station. These stations are
equipped with different visualization techniques and sensor technologies. Visualization
techniques, like projectors and smart glasses as shown in Figure [3.2] help workers during
assembly process by displaying instructions. Interactive screens can also be installed
at assembly stations using which workers can interact with stationery computers when
required. Assembly stations have areas dedicated for storing tools and parts used during
assembly. Sensors can be employed to track usage of tools and control inventory of
parts. RFID readers are installed on products and to know the current status of products
in addition to the tools and parts as in the traditional workstations.

3.5 Assistance System

Assistance systems can play an important role in supporting humans during complex
tasks [GWML11]. Production facilities are focusing on CPS that can interact with human

10

CHAPTER 3. STATE-OF-THE-ART

Projector

98 683060603086 0dE6660GE00880E6Fa

Container for
parts

EIZIQQ-]@@ —o]—{e]— ’ I Weighing sensor

Figure 3.2: Shows schematic description of a manual assembly station. Assembly station
may employ different visualization and sensor technologies, for example pro-
Jectors and weighing sensors, to track the assembly process and help workers
by displaying instructions. Source CAD model developed by SmartFactoryXt.

through many modalities. Pirvu, Zamfirescu, and Gorecky talk about the en-
gineering insights of such human centered yet highly automated cyber-physical system:
keeping adaptive control in mind, a cognitive assistance and training in manual industrial
assembly. The aim of such a system is to design a mobile, personal assembly work station
which assists the worker in task solving in real time while understanding and inducing
work-flows. Standardized abstractions and architectures help the engineers in the design
phase by reducing the complexity involved in building such systems [Kol+16].

Assistance system derives its principles from the Operator 4.0 principle where workers
are provided machines to aid their work. It helps workers by reading the product status
available with products in machine readable format, collecting other information about

11

CHAPTER 3. STATE-OF-THE-ART

Assistance System Hand-tracking

Tool Tracking
Maodule

Eye-tracking
Module

| Weighing Module

Figure 3.3: Shows schematic description of an assistance system. Hand-tracking module
has been developed by SmartFactory"t. Weighing module (highlighted in
yellow) will be developed as a use case of this thesis. Eye-tracking and tool
tracking modules are stated as examples which can be further developed.

the environment and helping the worker to decide the next step to be taken based on the
information it receives. Hence, this system can be seen as a context aware human-centric
cyber-physical system. As shown in Figure [3.3] this system consists of a central system
and one or more CPS modules.

These CPS modules are built on the principle of plug-and-produce. The analogy is drawn
from plug-and-play concept in computer science [Ara+01]. Plug-and-produce means a
smart device can be easily added or removed, replaced without disrupting functioning of
the system. The system should continue working while a CPS module is being added
or removed. Additionally, the system should be able to recognize the newly added CPS.
This process is different from the traditional processes in which systems need to be re-
programmed and machines are stopped for reconfiguration. Time taken in the complete
process is counted as downtime. Similarly, in case of plug-and-produce systems mainte-
nance can be done by removing only the required CPS module while the complete system
continues working.

For this purpose, each CPS module should have its own environmental information and
it should provide this information to the system to which it is being attached [Ara+01].
This gives central system the leeway to reconfigure and requires CPS modules to be smart
and adaptive which demands CPS modules to have certain level of intelligence.

An assistance system with a hand-tracking module is described and implemented on an

12

CHAPTER 3. STATE-OF-THE-ART

assembly station by Quint et al. [Qui+16]. The paper describes an information model that
illustrates the employed terminology and the system architecture of assistance in manual
tasks. As shown in Figure[3.4] system architecture has four main components: Messaging
Server, Workflow Model, Detection and Views. A Messaging Server connects all com-
ponents and allows them to exchange messages. A Workflow Model contains states and
transitions for changes between states for a particular assembly task. A Trigger monitors
different data sources (cameras, buttons) for events and Views display instructions based
on the current state of the assembly task. The system employs stationery computers,
tablets and smart glasses to display information to the worker as is shown in Figure [3.4]
If Workflow Model receives a relevant Trigger, it changes the internal state machine to
a valid next state and the new state is broadcast to all Views. Views show instructions
based on the current state of the assembly.

Detection . Visualization
(Trigger) Workflow Recognition (Views)

f

M ging Server
U pc
"y
[‘Workflow Model J

T m Tablet
nformation

Ea Projection

= @& LD
(2 MR

3D Hand Tracking Quality Control
of Assembled Parts

&rey SmartGlass

Figure 3.4: Shows schematic description of system architecture of assistance system. It
contains four main components at the highest level: Trigger, Messaging
Server, Workflow Model and Views. Source [Qui+16].

Further, various CPS modules can be attached to the assistance system like weighing
module, eye-tracking module or tool usage module. In order to fully exploit the benefits
of the CPS modules data exchange between these modules is necessary. Quint et al.
[Qui+16] point out that standardized semantic self-description is required to facilitate
interoperability between modules.

Recently, there have been some efforts towards discussing the need of bringing more
semantics and data-driven approaches to Industry 4.0. Cheng et al. [Che+15] identify
varying degree of semantic approach and further provide guidelines to engineers to select

13

CHAPTER 3. STATE-OF-THE-ART

appropriate semantic degree for different Industry 4.0 projects. Wahlster [Wah14] talk
about the importance of semantic technologies in mass production of smart products,
smart data and smart services. Semantic service matchmaking in cyber-physical produc-
tion systems is presented as a key enabler of the disruptive change in the production logic
for Industry 4.0. Obitko and Jirkovsky [OJ15] introduce the application of semantic web
technologies in handling large volumes of heterogeneous data from distributed sources.
Grangel-Gonzélez et al. [Gra+16] describe an approach to semantically represent infor-
mation about smart devices. The approach is based on structuring the information using
an extensible and light-weight vocabulary aiming to capture all relevant information.

The aim of this work is to ensure that CPS modules attached to assistance system
can share data and interoperate between themselves. Ontology is an efficient way of
interoperability between heterogeneous information systems |[CGYOQ7]. Further, Chen,
Finin, and Joshi [CFJO03|, Grangel-Gonzalez et al. [Gra+16|, and Semy, Pulvermacher,
and Obrst [SPO04] talk about ontologies being the key requirements for building pervasive
context-aware systems in which independently developed sensors, devices and agents are
expected to share contextual knowledge and to provide relevant services and information
to users based on their situation.

3.6 Ontologies

An ontology is an explicit formal naming, definition of entities, relationship between
entities, and constraints within a domain in order to have common understanding and
information for participating people and machines [CGY07|. It helps in explicitly stating
the assumptions and analyzing the "domain knowledge": this helps people from different
disciplines in understanding the relationships and constraints of a given domain.

The idea behind using ontologies in the thesis is to be able to formally and explicitly define
the structure and data of a CPS module. Further, it can act as a basis for providing
and fetching data from other modules attached to the central system. As the assistance
system consists of a central system and CPS modules, it is necessary to understand how
the ontologies for different CPS modules would be created and maintained. Hoehndorf
[HoelO] talk about upper ontologies and its usefulness in facilitating domain-specific
ontologies. Upper ontologies can be created to provide a framework for domain specific
ontologies of CPS modules. Upper ontologies will have common knowledge base and
logic which module ontologies use.

14

CHAPTER 3. STATE-OF-THE-ART

3.6.1 Upper Ontologies

Upper ontologies are high-level, domain-independent ontologies, providing a framework
by which disparate systems may utilize a common knowledge base and from which more
domain-specific ontologies may be derived [SPO04]|. Thus, upper ontologies facilitate
interoperability between domain-specific ontologies by the virtue of shared common terms
and definitions [Hoel0]. The concepts expressed in upper ontologies are intended to be
basic and universal concepts to ensure generality and expressiveness for a wide area of
domains. An upper ontology is limited to concepts that are meta, generic, abstract and
philosophical. Standard upper ontologies are also sometimes referred to as foundational
ontologies or universal ontologies. They contain definitions and axioms for common
terms that are applicable across multiple domains and thus provide semantic integration
of domain ontologies. Since they provide well defined primitives, they help in resolving
conflicts that may arise while extending the categories and provide common foundation
for both existing and new ontologies.

On the other hand, domain ontologies have specific concepts particular to a domain and
represent these concepts and their relationships from a domain-perspective. Multiple
domains can have the same concept but their representation may vary due to different
domain contexts. Domain ontologies inherit the semantic richness and logic by importing
upper ontologies.

Beisswanger et al. [Bei+08| describe use of upper ontology for sharing vocabularies needed
for consistently expressing meta-data in terms of semantic annotations and providing
principled forms of conceptual inter-linkage between data. Another important feature
of upper ontology is the structure that they impose on the ensuing ontologies: they
promote modularity, extensibility, and flexibility. According to Semy, Pulvermacher, and
Obrst [SPOO04|, upper ontologies can be built using two approaches: top-down and
bottom-up. They discuss benefits and limitations of both approaches. In a top-down
approach domain ontology uses the upper ontology as the theoretical framework and the
foundation for deriving concepts [SPO04]. In a bottom-up approach, new or existing
domain ontologies are mapped to an upper ontology. This approach also benefits from
the semantic knowledge of upper ontology but the mapping can be more challenging
as inconsistencies may exist between the two ontologies. For example, two teams may
have different vocabulary for a similar semantic variable. In this case, mapping the two
ontologies to an upper ontology would have inconsistencies. These inconsistencies are
resolved as and when needed. However, usually a combination of both approaches is used
to design upper ontologies.

15

CHAPTER 3. STATE-OF-THE-ART

The solution proposed to the problem of interoperability across modules relies heavily on
the idea of upper ontologies. Upper ontology starts with defining a set of high level enti-
ties and then successively adding new content under these entities [NPOla]. The solution
incorporates both the top-down and bottom-up approaches. The inevitable incompati-
bilities while making new ontologies are resolved as they are encountered. Depending on
the need entities are added to the high level ontology.

In an ideal situation, eventually a stage should be reached where the demands of both
high-level and low-level ontologies are satisfied. This resulting ontology may not contain
all the possible high-level definitions and axioms but it should be comprehensive enough
to attach to other domain-specific ontologies [NPO1a].

Ontologies were developed for the use on Semantic web. Semantic web is an extension
of web that help in semantically structuring data. The aim of Semantic web is to help
software agents interact and share information over the internet. This is done by encoding
the data in a machine interpretable language using constraints defined in the domain
ontology. This lets software agents locate resources to extract and use information on
the web. This differentiates ontologies from other traditional languages, like UML and
SysML, used to describe software structure.

3.6.2 Mid-level Ontologies

A mid-level ontology act as a bridge between basic vocabulary described in the upper on-
tology and domain-specific low-level ontology. Generally, mid-level and upper ontologies
are intended to provide mechanism to map concepts across domains. Mid-level ontolo-
gies may provide more concrete representations of abstract concepts found in upper
ontologies. This category of ontologies may also encompass terms and definitions used
across many domains but which do not qualify as concepts of a particular domain-specific
system. They are also known as utility ontologies.

Figure |3.5 shows an example of upper, mid-level and domain ontologies. Most general
vocabulary and concepts regarding Process and Location are defined in the upper on-
tology. Mid-level ontology is used to describe location in detail and defines variables
pertaining to Geographic Area of Interest. The domain ontology extends from
mid-level ontology and further defines Airspace and Target Area of Interest sep-
arately.

16

CHAPTER 3. STATE-OF-THE-ART

Upper

‘ Most General Thing ‘ Ontology

-~ ~

‘ Process = Location ‘
y 4

/ Mid-Level

Ontology
‘ Geographic Area of Interest ‘
/ AN
Domain
Ontology

‘ Airspace H Target Area of Interest

Figure 3.5: Shows a graphical representation of an example of Upper, Mid-level and
Domain ontology levels. Upper ontologies provide framework for disparate
systems, domain ontologies represents concepts particular to a domain and
mid-level ontologies act a bridge between upper and domain ontologies.
Source: [SPO04]

3.6.3 Representation of Ontologies

Ontologies are expressed as an abstract language: Web Ontology Language (OWL).
However, to understand the reasons behind its structure, it is important to look at their
representation and development. OWL has been developed on the basis of several layers
of underlying infrastructural layers shown in Figure [3.6] The syntactical layer is a serial-
ization layer and can be defined by XML or other markup languages. World Wide Web
Consortium (W3C) recommends XML /XML Schema, JSON, N-Quad and Turtle for this
purpose. Resource Description Framework (RDF) describes how to express relational data
in triples, RDF Schema (RDFS) adds more structure to RDF to make it more human /real-
world-modeling friendly and, finally, Web Ontology Language (OWL) adds vocabulary to
allow reasoning with and exchanging of knowledge within a domain. RDF, RDFS and
OWL are all W3C recommendations for knowledge representation in ontology building.
This section will only touch upon the basics necessary to understand the concepts re-
quired for the solution proposed later in the thesis. Readers are encouraged to know
more about the representation of ontologies from the W3C recommendations [Gro+09;
BGM14; |Gao+09].

17

CHAPTER 3. STATE-OF-THE-ART

Ontological Layer

KR Languages
Schema Layer RDF Schema

Metadata Layer RDF

Data Layer XML/XML Schema Syntactical
Languages

Figure 3.6: Shows four level modeling framework of ontologies. XML/XML Schema pro-
vides syntax of encoding text whereas RDF, RDFS and QWL are used for knowl-
edge representation. Source: Atkinson and Kiko [AK05].

XML / XML Schema

eXtensible Markup Language is a format to encode any structured data in a way that it is
readable by both humans and machines. XML Schema defines how to formally describe
an element in XML. XML/XML Schema provides syntactical constraints for knowledge
representation languages.

An example XML snippet may looks like Listing 3.1 A tagName can be interpreted
as class and an attribute as the property of the class. The data is used to give more
detailed structural content of the class and its relationship with other classes (i.e. nested
tags). The language can be eXtended by defining new tags (i.e. classes), properties (i.e.
attributes) under new name-spaces (i.e. ns).

<ns:tagName ns:tagAttributel="attrl—value”
ns:tagAttribute2="attr2—value">
data
</ns:tagName>

Listing 3.1: An example XML snippet. The ns stands for namespace, which is how the
language can be extended. Also, the data can again be one or more tags,
thereby allowing for expression of nested structures.

18

CHAPTER 3. STATE-OF-THE-ART

Predicate
Subject Object

Figure 3.7: Shows schema of a triple. A triple consists of a subject, a predicate
and an object. Each such statement in RDF also has a unique IRl (see
Section associated with it, which further has three statements associ-
ated with it, identifying the subject, predicate and object of the statement
(reification).

RDF

The Resource Description Framework (RDF) is a general-purpose language for represent-
ing information in the Web.

RDF is a data model which serves to link all RDF-based languages and specifications.
The abstract syntax is very simple: RDF graphs are sets of subject-predicate-object
triples, where the elements may be IRIs (see Section , blank nodes, or typed literals.
Example of a triple is shown in the Figure [3.7, It is easy to see how such triples can
be used to describe the resources and their inter-relationships. A RDF database is an
organized collection of RDF graphs related to a certain domain. Such a database forms
the raw fodder for ontologies and allows exchange of data while still preserving the
semantic meaning associated with them. RDF specification defines a vocabulary for this
purpose under its own namespace rdf.

For example, a person named John is a teacher, likes music, plays football and has a
bicycle. This information will be seen as Figure for an OWL ontology and stored in
the form of following triples in database.

e {John, isA, Teacher}
e {John, likes, Music}
e {John, plays, Football}

19

CHAPTER 3. STATE-OF-THE-ART

Football

Figure 3.8: Example description of triples in database.

e {John, hasA, Bicycle}

RDF is an abstract data description framework and lacks a serialization format. W3C
recognizes several valid serialization formats: XML (also called RDF/XML), Turtle, N-
Quads and N-Triples. As XML was the first serialization format, and for simplicity of
exposition, this thesis will only use the XML formatting. Back to the example, when
serialized to XML /RDF format, it may look like the following snippet shown in Listing.
The new vocabulary introduced by RDF are the terms with the namespace rdf, e.g.
rdf :Description, rdf:about, rdf:resource, etc.

<rdf:RDF xmlns:props="http://URI/for/our/properties”>
<rdf:Description rdf:about="http://URI/for/person/John">
<rdf:type rdf:resource="http://URI/for/class/Person” />
</rdf:Description>

<rdf:Description rdf:about="http://URIl/for/person/John">
<prop:isA>Teacher</prop:isA>
</rdf:Description>

<rdf:Description rdf:about="http://URIl/for/person/John">
<prop: likes >Music</prop:likes >
</rdf:Description>

20

CHAPTER 3. STATE-OF-THE-ART

</rdf :RDF>
Listing 3.2: An Example snippet of XML for RDF Graph shown in Figure

RDF also provides is a mechanism for querying database using SPARQL. RDF allows
reification of each triple in database to create (at least) three other statements: one
identifying the the subject, one the predicate and the object of the statement. All state-
ments are also treated as resources and URIs are assigned to them for this purpose. For
example, say John-plays-Football is defined as a triple in RDF format. RDF treats

each of the following entities {John, plays, Football} as subject of three statements

and assign URIs (see Section to them: JohnURI-rdf:subject-statementURI,
playsURI-rdf:predicate-statementURI and FootballURI-rdf:object-statementURI.
This makes the information more explicit, searchable, and gives OWL (discussed later)

the ability to make inferences.

RDFS

RDF Schema provides additional data modeling vocabulary for RDF data. In particular,
it allows:

e limiting the range and domain of predicates (i.e. attributes) via rdfs:range and
rdfs:domain, respectively, and,

e Object Oriented Programming like hierarchical modelling of Classes and Properties
via rdfs:subClass0f and rdfs:subProperty0f, respectively.

RDFS also allows adding labels and annotations to RDF statements (via rdfs:label
and rdfs:annotations). These can be used to make the statements more human-friendly
and to add more meta-data to the statements for certain reasoners.

OWL

The Web Ontology Language (OWL) is a semantic markup language for publishing and
sharing ontologies on the World Wide Web. It is a knowledge representation language,
designed to formulate, exchange and reason with knowledge in the domain of inter-
est [Gro+09]. OWL is designed for use by applications and developers alike. Formally,

21

CHAPTER 3. STATE-OF-THE-ART

it is a vocabulary extension of RDF (the Resource Description Framework) and RDFS.
OWL facilitates greater machine interpretability of knowledge than that supported by
XML, RDF, and RDF Schema (RDFS).

Additionally, it also has formal semantics associated with its vocabulary which allows use
of Description Logic [Baa03] for making inferences. For example, OWL allows marking a
Property as an inverse of another property by using the predicate owl:inverse0f. This
allows writing a statement like hasASonURI-owl:inverseOf-hasAFatherURI. Now if
an Ontology has a statement John - hasASon - Sam then by the virtue of inverse
property, an OWL reasoner can infer that Sam - hasAFather - John.

<owl:ObjectProperty rdf:about="hasASonURI">
<owl:inverseOf rdf:resource="hasAFatherURI"/>
<rdfs:domain rdf:resource="PersonClassURI"/>
<rdfs:range rdf:resource="PersonClassURI"/>
</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="hasAFatherURI">
<rdfs:domain rdf:resource="PersonClassURI"/>
<rdfs:range rdf:resource="PersonClassURI"/>
</owl:ObjectProperty >

Listing 3.3: Snippet of OWL code showing how owl:inverse0f can be used. It also
uses vocabulary defined by RDFS. Note that an explicit owl:inverseOf
definition was not needed for hasAFather as it can be also be inferred using
Description Logic.

3.6.4 Structure of Ontologies in Protégé

Protégé is a free, open source ontology editor and a knowledge management system. It is
created by Stanford Medical School for developing intelligent systems. Protégé provides
a graphical interface to define ontologies which helps various stakeholders to think in
terms of concepts and relations in the domain. Protégé is used as the ontology building
tool and to demonstrate knowledge exchange across CPS modules later in this thesis
work.

Entities are the atomic constituent of ontologies [Gro+09]. Typically, entities are an en-
compassing concept for classes, object properties, data properties or individuals. Entities
are discussed in detail here:

22

CHAPTER 3. STATE-OF-THE-ART

Classes

Classes are the center of an ontology as they represent concepts in most ontologies.
Classes are concepts in a domain. Classes can have hierarchy in the form of subclass
and superclass. A subclass inherits from a parent class or superclass. The idea behind
inheritance is that subclass acquires all the properties and behaviours of parent class.
Thus, it saves the effort to define similar classes again. Classes can be created in a
particular ontology or can be imported from a different ontology. Figure [5.18| shows
WeighingSensor, Container and RFID are the classes created in the weighing mod-
ule system ontology. The classes correspond to different concepts of weighing module.
WeighingSensor reports the raw weighing sensor data, RFID gives information read from
RFID tags and Container has static values about container box.

Active Ontology x Entities x Individuals by class = OntoGraf x

Classes Object properties Data properties Annotation properties

WeighingSensor
RFID
Container

Figure 3.9: Shows the classes (WeighingSensor, RFID and Container) defined in
weighing module ontology.

Further, axioms are defined for classes. They can be understood as facts about a concept.
According to the W3C's OWL specifications, axioms are as the basic statements that an
ontology expresses and asserts as true. They can be explicitly stated or inferred from given
knowledge. For example, given that John-isA-teacher and teacher-isA-person, the
axiom thus inferred is John-isA-person.

Object properties

Object properties define relationships between classes and, therefore, between individuals.
Object properties can have certain attributes themselves (e.g. owl:FunctionalProperty)
and can be related to other properties (e.g. using the owl:inverseOf relationship). For
example, if there is an object property defining John-1ikes-Music, then the inverse of
the object property can be Music-isLikedBy-John.

23

CHAPTER 3. STATE-OF-THE-ART

Active Ontology x | Entities x | Individuals by class = | OntoGraf x

Classes Object properties Data properties Annotation properties

Object property hierarchy: hasProductDetailsOf

T= | S| | 0§

V- oyl topObjectProperty
:
—m™hasRFIDTag
M isKeptOn
M hasContainer
m providesDataTo
B getsDataFrom

Figure 3.10: Figure shows relationships between objects WeighingSensor, RFID &
Container defined in weighing module ontology in Protéggé.

Figure [3.10] shows both direct and inverse relations defined in weighing module ontology
between the classes: Container, WeighingSensor and RFID. Following are the object
properties defined in Protégé for weighing module ontology:

WeighingSensor-RFID relationship:

e WeighingSensor getsDataFrom RFID

e RFID providesDataTo WeighingSensor
WeighingSensor-Container relationship:

e WeighingSensor hasContainer Container

e Container isKeptOn WeighingSensor
RFID-Container relationship:

e RFID hasProductDetailsOf Container

e Container hasRFIDTag RFID

Data properties

These are used to connect individuals (see Section to literal values. Literal values
are defined by domain and range it has and can be of various data types like string,
float, integer. Figure [3.11] shows data properties corresponding classes: WeighingSen-
sor, RFID and Container. WeighingSensor has data properties: hasTotalWeight, RFID

24

CHAPTER 3. STATE-OF-THE-ART

has data properties: {hasPartName, hasPartType, hasPartWeightTolerance} and
Container has data properties: {hasX, hasY, hasZ, hasLength, hasBreadth, hasHeight,
hasInventory} as shown in the figure.

Active Ontology = Entibes = Individuals by class = OnbtoGraf =

Clagses | Object propertses Daba propeities | Anmotabion propertes
owl:topDataProperty
== hasPartWeightTolerance
= hasInventory
e hasTotalWeight
= hasPartWeight
mhasPartType
M hasContainereight
M hasHeight
™ hasBreadth
M hasLength
mehasZ

- hasy
o hask

Figure 3.11: Shows data properties of classes Container, WeighingSensor and RFID
in weighing module ontology.

Individuals

Individuals are instances of the aforementioned classes. Thus, individuals contain prop-
erties of their classes and further assign values to the properties to describe that instance
of class. Figure shows three individuals of classes Container, WeighingSensor
and RFID.

Individuals further assign values of data and object properties for each instance of that
class. Figure [3.13] shows an example of individual Container1 of the class Container
created in the weighing module ontology. The individual describes data properties:
hasContainerWeight, hasLength, hasBreadth, hasHeight, hasX, hasY, hasZ and
hasInventory for a particular container. Similarly, individual Container1 defines its
relationships with individuals of other classes. Containerl hasRFIDTag RFID1 and
isKeptOn WeighingSensorl.

25

CHAPTER 3. STATE-OF-THE-ART

Individuals: Containerl

¢ X
& Container2

& cContainer3

& RFID1

& RFID2

& RrRFID3

& weighingSensorl
& weighingSensor2
& WeighingSensor3

Figure 3.12: Shows three individuals of classes Container, WeighingSensor and RFID
each in weighing module ontology.

Property assertions: Container1
I
= hasRFIDTag RFID1
M isKeptOn WeighingSensorl

Data property assertions
s hasContainerweight “150.0"~~xsd:double
mm hasBreadth "9.0"~~xsd:double
™ hasinventory 2
®® hasHeight “7.5"~~xsd:double
mmhasLength "15.0"*~xsd:double
M hasX "0.0"~~xsd:double
mhasY "0.0"~~xsd:double
®mhasz "0.0"~"xsd:double

Figure 3.13: Figure shows values of data properties of Containerl and its relation with
RFID1 & WeighingSensorl.

SPARQL Query

SPARQL Protocol and RDF Query Language (SPARQL) is a semantic query language
for databases. It retrieves and manipulates data stored in RDF format. SPARQL 1.0
is a W3C recommendation since 2008. Later in 2013, SPARQL 1.1 was added as W3C
recommendation. Listing [3.4] shows an example of a SPARQL query. Prefixes rdf, owl,
rdfs and xsd (all are standards of W3C) are added if their vocabularies are required to
make the query. The namespace/prefix arbeitsplatz is defined by the author in the
process to build Protégé model for the use case.

26

CHAPTER 3. STATE-OF-THE-ART

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf —syntax —ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdfs: <http://www.w3.0org/2000/01/rdf —schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX arbeitsplatz: <http://www.semanticweb.org/SmartFactoryKL/
Arbeitsplatz /BaseOntology/>

SELECT ?partName ?name
WHERE { 7?partName arbeitsplatz:hasPartType 7name }

Listing 3.4: Shows an example of SPARQL query where prefixes rdf, owl, rdfs and xsd
are defined by W3C and prefix arbeitsplatz is defined by the author. The
prefixes identify namespaces which contain the vocabulary to run the query.

3.6.5 Ontology Integration

Ontology development can be seen as defining structure, constraints and data for other
programs to use. Software agents and other problem solving methods can use these
ontologies as ready-made data that can be fed to the program in order to understand
the axioms and basic principles of the domain. The independently developed ontologies
need to join to exchange data.

Figure depicts the idea behind ontology integration. It is the process of finding
commonalities between two ontologies, for example Ontology A and ontology B, and
a third ontology C is derived from it. This new ontology C facilitates interoperability
between software agents based on ontologies A and B. The new ontology C may replace
the old ontologies or may be used as only an intermediary between systems based on
ontologies A and B are merged in a third ontology C as shown in the figure. Ontologies
can be integrated primarily in three ways depending on the amount to change required
to derive the new ontology [Sow-00]:

By alignment

It is the weakest form of ontology integration. This requires minimal change, but supports
only limited kinds of interoperability. It is generally used for information retrieval, but does
not support deep inferences. For example, alignment maps concepts and relationships
between ontologies A and B such that it partly preserves ordering by subtypes in both

27

CHAPTER 3. STATE-OF-THE-ART

Ontology A Ontology B
Ontolegy C

N

Figure 3.14: Shows schematic description of ontology merging. In the presented example,
Ontology A and Ontology B are merged with an existing Ontology C.

ontologies. If an alignment maps a concept or relation x in ontology A to a concept
or relation y in ontology B, then x and y are equivalent. The mapping of concepts is
not complete, therefore there can be a concept or relation in ontology A that has no
equivalent in ontology B.

Before the two ontologies A and B are aligned, it may be necessary to introduce new
supertypes and subtypes of concepts and relations in one of the two ontologies. No other
changes to the axioms, definitions or computations in either A or B are made during the
process of alignment [Sow01].

By partial compatibility

It is more interoperable than by the alignment but also requires extensive changes as
compared to alignment. It can be defined as an alignment of ontologies A and B that
supports equivalent inferences or computation on all equivalent concepts and relations.
For example, if ontologies A and B are partially compatible then any inference or compu-
tation that can be expressed in one ontology using only the aligned concepts and relations
can be translated to an equivalent inference or computation in the other ontology.

28

CHAPTER 3. STATE-OF-THE-ART

By unification or total compatibility

This is also known as ontology merge. It gives complete interoperability between the data
of ontologies, but may require significant changes. For example, if partial compatibility
of two ontologies A and B is extended to a total compatibility in the new ontology C
then ontology C includes all concepts and relationships of both ontologies A and B. Any
inference or computation that can be expressed in either one ontology can be mapped to
an equivalent inference or computation in the other ontology [PGM99].

3.6.6 Ontology Conflicts

Ontology merging for integration of heterogeneous data sources is a complex activity that
involves data reconciliation at various levels of conflicts. These heterogeneous conflicts
need to be resolved before the data can be integrated. Ram and Park [RP04] categorize
heterogeneity conflicts in the following abstraction levels, each discussed separately.

Data

Conflicts arise due to discrepancy in the underlying data values across multiple sources.
This conflict arises at instance level and are related to the representation or interpretation
of data values. This includes type, incorrect names, unit, precision, allowed data and
missing data. Examples of these can be "km" and "metre”, "dollar” and "$".

Structural

Conflicts arise due to discrepancy in the underlying schema. This means different alter-
natives are provided by one data model to develop schema for same reality.For example,
what is modelled as an attribute in one relational schema may be modelled as an entity in
another relational schema for the same application domain. " Author” can be an attribute
for the entity "book” and "author” can be an entity that has a relationship with " book” .
Another example two sources may use different names to represent the same concept,
"price” and "cost”, or the same name to represent different concepts, or two different
ways, for conveying the same information, "data of birth” and "age”.

Further, conflicts at each level can be categorized into two kinds:

29

CHAPTER 3. STATE-OF-THE-ART

e Syntactical Conflicts: refer to discrepancies in the representation of data. For
example, "1-54" and "1.54" or " price=100 euros” and "price : 100 euros”.

e Semantic Conflicts: refer to disagreement about the meaning or interpretation
of same or related data. For example, "staff’ and "employees”.

3.6.7 Temporal Dynamic Ontologies

In dynamic ontologies, time can be added as a variable for restraining the system.
CHRONOS can be used as a tool to make temporal ontology in Protégé [PPB14]. The
system is to be updated with time. However, time as a variable for the assistance system is
not discussed in this thesis. It is one of the areas that might be useful in the development
of assistance system ontology and can be explored in future work in Chapter [7]

3.6.8 Importance of Ontologies in Context of Industry 4.0

Semantic description of devices and services play a crucial role to be able to exchange
data. Moreover, Grangel-Gonzilez et al. [Gra+16] talk about a common semantic model
for components of 14.0. This section deals with the major reasons for using ontology
based semantic modeling for 14.0:

e To share common understanding of data: Ontologies help in providing formal
naming and definition of entities across different domains.

For example, different airline websites contain information about flights. If these
websites share the underlying ontology, then other software agents can extract and
index this information. This makes it possible for software agents, like a travel
planner website, to query the indexed aggregated information, thus facilitating
sharing of knowledge and putting data to more use [N+01].

e To facilitate interoperability: 14.0 envisions new ways of managing data, devices
and services. These new components are made using different formats of data.
Furthermore, there is an existing legacy of production systems need to coexist with
the new data and new formats. To meet this demand of interoperability, ontologies
have proven to be a successful way to integrating different types of data [Gra+16)].

e To explicitly state the underlying assumption of domain: It is easier to
define assumptions in ontology and revisit them from time to time. If the domain
knowledge changes, these assumptions can be changed accordingly. On the other

30

CHAPTER 3. STATE-OF-THE-ART

hand, hard-coding these assumptions might make if difficult for other programmers
to search and change them. It becomes particularly more difficult for people who
do not have expertise in programming. Further, it helps newbies to understand the
scope of domain and the terms associated with it.

e To enable reuse of domain knowledge: It is the most important feature of on-
tologies. Upper ontologies are built to facilitate the reuse of domain knowledge. It
allows experts to build semantically rich common knowledge base and a theoretical
framework for design. This knowledge base can be imported by other ontologies
to represent concepts and relationships in a domain-perspective. Multiple domains
can have the same concept but their representation might be different depending
on the domain context.

e To ensure data availability: In order to build more pervasive context-aware
adaptive systems, it is important that data is available to devices in both ver-
tical and horizontal integration (discussed in Section of Industry 4.0. 14.0
components should be able to communicate the data generated and interact with
other machines. Ontologies can be employed as the standard representation of
data. RDF data serialization can be easily done in many formats and SPARQL
can be used to query database, thus making the data available through a standard
interface [Gra+16)].

¢ Providing global identification Global identification of Industry 4.0 components
and a linking mechanism between components and information are of paramount
importance for enabling intercommunication between components and their en-
vironment. Ontology provides Uniform Resource Identifiers and Internationalized
Resource Identifier (URIs/IRIs) as the unique global identifiers, thus ensuring dis-
ambiguation of entities. In addition, OWL provides identification capabilities that
can be extended by various existing vocabularies and achieve an unambiguous ref-
erence to an entity within a given context.

31

4. Methodology

The focus of this work is to develop guidelines for interoperability between different cyber
physical system with heterogeneous interfaces. To facilitate data exchange across CPS
modules the data needs to be semantically described. Figure[d.I|shows different languages
used to represent data semantically. The languages and their relevance in semantic repre-
sentation of data in the context of cyber-physical systems are discussed. These languages
can be categorized as: controlled vocabularies, taxonomies, folksonomies, thesauri and
ontologies. However, not all languages are sufficiently expressive. The more expressive a
language is, the more accurately it can capture the specification of terms and relation-
ships between them. This chapter will briefly explore the various languages and discuss
their suitability for semantically describing CPS modules.

A controlled vocabulary is a contended list of terms for concepts along with the non-
preferred (incorrect variants) terms. Controlled vocabularies are also called authoritative
files and may not necessarily have structure or relationships between terms. They are
generally used to ensure consistent indexing. Controlled vocabularies are the broadest
category which includes thesauri and taxonomies.

A taxonomy is typically a controlled vocabulary with hierarchical structure and relation-
ships between terms. The hierarchy is generally of the form parent/broader, child/nar-
rower or both if the term is at the mid-level hierarchy. Terms with a taxonomy are called
nodes. Equivalent synonyms may exist in a taxonomy.

However, taxonomies lack more complex relationships found in thesauri and ontologies.
Thesauri are essentially controlled vocabularies following a standard structure and well-
defined relationships. The relationships are generally of three kinds: hierarchical, asso-
ciative and equivalent (synonyms). Thesauri are mostly used to index literature on a
specialized subject area.

Traditional languages like UML do not permit sharing of the contextual knowledge be-
tween domains. However, such knowledge based semantic modeling with efficient inter-

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 32
Semantically Described CPS Module

CHAPTER 4. METHODOLOGY

Ad-hoc First-order,
Hierarchies XML Data Models Higher-order,
(Yahoo!) DTDs (UML, STEP) Modal Logic
DB Logic
Terms Thesauri Programming
Schema
informal
*Ordinary’ Structured
Glossaries Glossaries Logics
Data [nfoﬂnal 1
Diclionarics Hierarchjes Forma L
(EDI) Folkeonoasies) Taxonomies
Glossaries & . MetaData, -
Data Dictionaries ;ﬁm - XMI. Schemas, Logical Languages
; Data Models

Figure 4.1: These are the different languages that can be used for semantic representation
of data. Languages are placed on a scale based on how formally and explicitly
they state the terms and relations between them. An ontology is a logical
language which uses description logic to represent a data model for a domain.
It itself is specified using an XML schema and usually uses XML as the
serialization format. Source: Noy, McGuinness, et al. .

operability between heterogeneous modules can be done using ontology [N-+01].

An ontology is a kind of taxonomy with structure and specific types of relationships
between terms. There are more types of relationships than a taxonomy and they are
more specific in their function. An example of such a relationship is the inverse function,
which cannot be expressed in a taxonomy. Ontological relationships are generally used to
describe information systems as they capable of capturing more terms and their relations
explicitly and formally.

A folksonomy differs from taxonomy in structure. Folksonomies are typically have cate-
gories defined by tags and may not necessarily have a hierarchical parent-child structure.
Folksonomies are primarily used by people to apply tags to online terms.

Keeping in mind the task at hand, folksonmies are not a viable option as they serve a
completely different purpose: that of generating customized categories for users. Con-

33

CHAPTER 4. METHODOLOGY

trolled vocabularies and taxonomies lack the structure to depict complex relationships
between terms. Furthermore, comparing thesauri and ontologies, ontologies are the bet-
ter choice as they can specify terms and relations in a manner which allows for intelligent
inferences using Description Logic [Baa03].

Ontologies can be categorized in broadly three kinds: upper, mid-level and domain on-
tologies depending whether they state the general terms and definitions of these terms
or can be tailored to domain-specific applications. Upper ontologies are made to de-
fine terms and relationships at a high-level and are domain-independent, thus providing
a framework by which disparate systems may utilize common knowledge base. Upper
ontologies present abstract concepts of systems and facilitate interoperability between
domain-specific ontologies by the virtue of shared common terms and definitions. Mid-
level ontologies serve as a bridge between upper ontologies and domain-specific ontolo-
gies. They provide mechanism to map concepts across domains and present more concrete
representations of abstract concepts of upper ontology. Domain-specific ontologies, as
the name suggests, are tailor-made for a particular domain.

Since this work deals with an assistance system which has a central system and one
or more CPS modules, the design of the semantic structure of the complete system
will be considered. Here, upper and mid-level ontologies can be employed to provide
exchange and ease of understanding of data among modules: Upper ontologies provide
basic vocabulary and mid-level ontologies provide mechanism to map concepts for other
domain-specific ontologies. Upper ontologies would provide vocabulary to CPS modules
through which they can interact and query the central database for the data which the
central system itself uses. If domain-specific ontologies, i.e. the module ontologies, have
access to the vocabulary being used by other modules (either via mid-level ontologies
or otherwise), they too can query the central database for data being provided by other
modules. Sharing of data across the entire CPS system while preserving the semantic
meaning attached to it will solve the problem of interoperability, which is the primary
goal of the thesis.

This thesis also provides a framework for designing a CPS module and adding it to a
central system. Before the start of the designing of the ontology of the module, it is
necessary to define the scope of CPS module which in turn decides the CPS intelligence.
The role of hardware and software limitations and the optimal representation of the in-
formation for the central system while deciding the system boundary will be discussed.
Finally, a real world implementation will be used as an example to explore the various is-
sues one may face during implementation and deployment and principles will be discussed
which will form a basis for making the design choices encountered.

34

5. Concept

As discussed in Chapter [2] this thesis deals with an assistance system used to help
workers during assembly processes. This system consists of a central system and one
or more CPS modules as described in Section [3.5] Presently, the system implemented
at SmartFactory®" has a hand-tracking module deployed at a manual assembly station.
However, to fully exploit the benefits of an assistance system, it is necessary that the CPS
modules can exchange data between themselves. The data exchange is non-trivial because
these CPS modules may be developed independently, and, therefore, may have different
data structures, representation and communication protocols. One way to overcome
these barriers is to require modules to be semantic described [Qui+16]. This work aims
at providing guidelines for designing a CPS module and adding it to an assistance system.
A framework will be proposed for designing CPS modules, semantically describing these
modules and exchanging of data using ontologies. The framework is then used to show
how to design a weighing module for the assistance system, how to semantically describe
it, and how to allow interoperability with other modules.

5.1 Framework

This section describes the framework for designing additional modules for an assistance
system. These principles can also be applied for designing general CPS, but will concen-
trate only on the assistance module for ease of discussion. The framework focuses on
defining system intelligence and developing semantic models for the systems.

The first step in the design process is to define the objective of the CPS and how
the effectiveness of the module can be gauged. Since CPSs should have decentralized
intelligence [Sal+15|, the next step is deciding the intelligence of CPS modules which, in
turn, requires deciding their scope. Hence, after defining the objective, how to decide CPS

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 35
Semantically Described CPS Module

CHAPTER 5. CONCEPT

boundary and, consequently, formulation of system intelligence prerequisites is discussed.
Following that, an information model, which defines and declares all the relevant data
of the CPS, is developed. Further, ontologies are developed based on the information
model and a way to integrate ontologies is suggested which addresses the problem of
interoperability of heterogeneous data.

5.1.1 Objective

This section deals with the objective of adding a CPS module to the assistance system
and discusses a possible ways of assessing the effectiveness of the added CPS.

Since the assistance systems are aimed at helping the worker, it is important to ensure
that the system is not too complex for the worker who is using it. Complex-to-use systems
may act as inhibitors and cause general discomfort in workers [Vil+17]. Therefore, it is
necessary that the interacting interface for the worker, if any, should be easy-to-use. The
metric can be: improvement in worker's comfort and job satisfaction and can be gauged
through on and off-line surveys and feedbacks. Consequently, the effectiveness of the
CPS module and the assistance system as a whole, can also be obtained.

The next step in the design process is deciding the system boundary which is discussed
in the following section.

5.1.2 System boundary

The assistance system assists workers by communicating the next step to be taken in the
assembly process. It has different CPS modules with sensors and a central unit which
decides the next step depending on the data provided by the modules. These modules
provide sensory data in different forms to the central unit. At the onset of design, it is
often unclear what data the central unit should receive from the sensors. The options
range from all raw data to a binary signal (0K/not-0K). This design choice decides the
level of processing which should happen on the modules. Hence, it becomes important
to ascertain the scope of the modules which defines the form in which data is required by
the central unit. Here, the use of the notion of sufficient statistic to decide the boundary
of systems is proposed.

In statistics, a statistic is sufficient with respect to a parameterized statistical model if no
other statistic that can be derived from the same sample (e.g. raw sensor data) provides
any additional information as to the value of the parameter [Fis22]. For example, consider

36

CHAPTER 5. CONCEPT

HEEEInnne L=l Ll Lo]
CORCIRCEY PRI
5 ~
2 DN
/"’E_er}w—a?\, 7 Cenal
e S S _foge S
Mean=1 Mean =1

Figure 5.1: Shows data required to calculate mean of values. In the first case, complete
raw data is provided to the central node to calculate mean whereas in the
second case, only the sufficient statistic is provided.

the sufficient statistic to calculate mean of samples which are distributed across multiple
nodes as shown in Figure 5.1 Each node only needs to report the sum of its samples
and the number of samples to the central node doing the calculations. The central node
then can calculate the total sum and the total number of samples and produce the mean
without having the complete raw data (thereby saving computation and communication
costs). Hence, (sum of samples, number of samples) from each node is a sufficient
statistic for calculation of the mean on the server. Note that sufficient statistic are not
unique for a given model and dataset.

The choice of sufficient static is driven by the data required by central system. In other
words, the vocabulary, i.e. the terms defined by the central system, decide the system
boundary.

5.1.3 System intelligence

Ideally, the modules should have as few computational/communication requirements as
possible. It keeps the module cheap to produce (higher computational power is more
expensive), simple to maintain (simpler programs and internal components), and energy
efficient (more powerful hardware requires more energy to run) while still assisting the
decision-making in the central system.

However, in order to calculate the sufficient statistic discussed above, the module needs
to be able to process the raw data it is receiving from its sensors and perform certain

37

CHAPTER 5. CONCEPT

calculations. Hence, the choice of the sufficient statistic will put lower bounds on how
much computational power the module needs to have. Further restrictions on the com-
putational ability of the system can be derived from bounds on quality or accuracy of
the statistic required by the central system. Higher accuracy may require using more
powerful models for approximating the sufficient statistic, which may, in turn, require
higher computational /communication overhead.

Therefore, system boundary and system intelligence are coupled requirements which need
to be decided simultaneously. Both are key design decisions which will guide the exten-
sibility and deployability of the CPS in real-life.

5.1.4 Developing information model & ontology

Information model represents concepts and the relationships, rules, and constraints to
specify data semantics in the domain of discourse. It helps in understanding the struc-
ture of information, make domain assumptions explicit and analyze domain constraints.
Therefore, it is important to develop an information model of the semantic data before
creating an ontology.

Total

weight
—4 Weighing sensor
Sensor

precision

Part name

Part type

i 1
Weighing Module n o

tolerance

Inventory
threshold

i
XV Z

Dimensien
s:L,B H

310) B

Figure 5.2: An example of information model for a weighing module. It shows the relevant
physical entities and relationships between them.

38

CHAPTER 5. CONCEPT

Information model can be seen as an abstraction of the physical layer developed by listing
the physical entities present in process. All the physical entities (e.g. actuators, sensors
and tags) are listed, irrespective of their role in calculating sufficient statistic. In the
second step, relations between physical entities are drawn. A module can have more than
one sensor which is represented by has (n) statement in Figure 5.2l The end nodes of
all branches are the literal values for a parameter, which are usually either a string, an
integer, or a floating point number.

Figure [5.2| shows the information model of a weighing module. The model consists
of physical entities and relationships between these entities. One or more weighing
modules can be attached to the central system, as discussed earlier. The relationships
can map object-to-object, e.g. weighing module has exactly one {Weighing sensor,
RFID, Container}, or can map object-to-data properties, e.g. RFID has exactly one
{part name, part type, part tolerance, inventory threshold} as shown in
Figure [5.2] It is important to map all possible (raw) data in the model so that the re-
lationships are clearly defined. This model will be instrumental in creating the weighing
module ontology.

Based on the information model, an ontology is created for the module as shown in
Figure [5.3] Information model acts as a lower bound for the ontology, which means
entities presented in information model are mapped one-to-one in the ontology. However,
sufficient statistic might not be a part of the information model which has to be included in
ontology. Thus, sufficient statistic, derived from system boundary and system intelligence,
serves as an upper bound of the ontology.

For example, sufficient statistic for a WeighingModule can be hasNumberOfParts which
is not present in the physical layer of information model. Hence, hasNumberOfParts is
added as a data property in the ontology.

5.1.5 Merging ontologies

Ontology integration is the process of finding commonalities between two different on-
tologies A and B and deriving a new ontology C that facilitates interoperability between
computer systems on the A and B ontologies [Sow~+00]. Integration can be done primarily
in three ways [Sow01|, namely:

e Ontology alignment

e Partial Compatibility Ontology

39

CHAPTER 5. CONCEPT

Design

Information Model Ontology

Raw Data

M\

Processed
Values

Preprocessor

My

4

™y

Deployment

Figure 5.3: The information model (top-left), which is based on the physical setup of the
system, is used to design the ontology (top-right) during the design phase.
During implementation of the model, in the deployment phase, the sensors
in the information model will produce some raw data. This raw data will be
preprocessed by the CPS module (this is where system-intelligence comes into
play) and will be made ready for the ontology. The preprocessing step may
include operations like analog to digital conversion, computing a parameter
which is a function of data from more than one sensor (e.g. numberofParts
from totalWeight and weightPerPart), calculating a moving average of
a sensor reading, etc.

e Unification or Ontology Merge

Ontology merge is chosen as the preferred way of ontology integration because it pre-
serves complete ontologies while collecting data from different parts of the system into a
coherent format which is not completely true for ontology alignment and partial compat-
ibility ontology as discussed in Section [3.6.5] Figure [5.4] schematically depicts merging of
ontologies. The entities (classes, individuals, data and object properties) used by more
than one module are defined and assigned in one module. These entities are imported
by other modules when required.

40

CHAPTER 5. CONCEPT

— Central
Y System
A4 Upper
<777 _ontal
~ (/& Qniology
))
(N R,

Central System Ontology

Weighing Module Ontology

Ontology import
Ontology merge

Figure 5.4: Shows schematic description of central system upper ontology import by
central system and weighing module ontologies. Further, weighing module
ontology merge in central system ontology is indicated.

For example, weighing module ontology and central system ontology use WeighingSensor
class (refer Figure . Therefore, these ontologies are developed independently and
both import central system base ontology in order to access the same class definitions.
The ontologies are then merged to update the values of the instances. Weighing module
ontology can be further programmed using an OWL API function for merging ontologies
to deal with problems like the latest updated data in case of merging ontologies. Here,
entities are identified as IRIs. It should be decided based on the requirements if the
complete ontology is merged every time and at what frequency the ontologies should
be merged. It is important to update otherwise static values because we do not know
whether any value is changed or not. A venue for future work is including (synchronized)
time as a variable which can keep track of the last-updated time of various quantities
saved on the central system, thereby allowing for selective merges based on which data
is new.

To summarize, a framework has been proposed for enabling interoperability of hetero-
geneous sensory data while designing CPS modules for assistance system. First, the
objective of adding the CPS module should be clearly stated which is necessary to set
targets and gauge improvements. Then system boundary and system intelligence should
be defined which are necessary to decide the scope of modules and decide the hardware
to be used. Next, the information model ought to be designed which will serve as the

41

CHAPTER 5. CONCEPT

base for ontology creation. In the final section, the communication between modules and
how ontologies should be merged is discussed.

In the next section (i.e. Section , a deeper look into the design of the information
model and the ontology is taken as they leave scope for several design decisions. These
are discussed with the help of examples and rationale behind the decisions taken are
discussed. Similarly, Chapter [6] will deal with the design choices and problems faced
during deployment.

5.2 Model Development

In this section, the top-down (ontology based) and bottom-up (information model) de-
velopment of models for the CPS modules are discussed. Though the information model
should mirror the physical layer as faithfully as possible, there are some room for design
in it. Similarly, the ontology designed may differ from the information model in a few
places due to requirements of the central system and, hence, while the information model
provides a good blueprint for it, some design choices still need to be made.

The issues faced during deployment of the modules will be discussed in Chapter [0

5.2.1 Information model

In this section, designing of the information model of a CPS is described while using
the model of the Weighing Module as an example. Before describing the information
model, it will be worthwhile to briefly study the physical layout of the Weighing Module
System, which is shown in Figure[5.5] The system may contain more than one Weighing
Module with each module further containing an RFID reader, a container and a weighing
sensor, as shown in the figure. Information model for this weighing module is developed
as follows.

Figure [5.6] shows the information model for a part of the weighing module. The contin-
uation (i.e. the dotted lines) denote the places where the model has been truncated and
the remaining parts are shown in Figure [5.9] Figure [5.8] and Figure [5.10] The weighing
module system may have more than one weighing module and, therefore, the information
model allows a weighing module system to have n weighing modules. Each weighing
module in the model further has exactly one container to keep parts or products. It
has, among many other properties/entities) exactly one RFID tag attached to it (see

42

CHAPTER 5. CONCEPT

Weighing Module

Container
RFID Readear

Weighing Sensor Raspberry Pi

Figure 5.5: Simulated image of the Weighing module used for the implementation. The
module consists of three weighing sensors, each with a container and an RFID
reader. Source:SmartFactory"

Figure 5.10). The RFID tag has the specifications (static values) of the product (see
Figure[5.9). The weighing module further has a weighing sensor to read the weight values

(see Figure 5.8)). This model is shown in Figure [5.6]

As a side-note, there is no unique information model for the weighing module and a
design decision is made to arrange the entities in this manner. If the information model
was to reflect physical reality more closely, it would have looked like Figure [5.7] because
the RFID tag is attached to the container. The RFID tag in this model is nested inside
the Container. However, actually, the RFID tag and the Container are independent when
it comes to the information they provide to the Weighing Module. Nesting them one
inside the other belies their dependence. It also makes the information model more nested
and, hence, more complex and constrained. The independent nature of each information
source is preserved and the structure of information model is kept more flexible by saying
that weighing module has exactly one container, one RFID tag and one weighing sensor.

The purpose of RFID tag is to link a product with its specifications. Therefore, an
RFID tag has exactly one product and contains exactly one name, weight and tolerance
of weight corresponding to the product it has as shown in Figure Here again the
information could be structured in the different way by saying that RFID tag has exactly
one product name, product weight and product weight tolerance but the former structure
is chosen because it emphasizes the objective of attaching RFID to a product which is

43

CHAPTER 5. CONCEPT

weighing sensar | =« « -

RADtag
.-.-

Weighing
Module System

Figure 5.6: Shows configuration of Weighing module which has Weighing sensor,
RFID Tag and Container.

also one of the principles of Industry 4.0 as discussed in Chapter 3

The Container has its own weight, dimensions and position on the manual work station.
These are mapped in the information model as container has exactly one weight value,
one position and one set of dimensions as shown in Figure[5.10] The position has exactly
one coordinate which contain exactly one value of x, y, z and dimensions have exactly
one length, breadth and height. As the figure depicts, there is one more value attached
to the container which is inventory threshold. Inventory threshold can also be attached
to the object product but is a part of container for the ease of data handling as RFID
tag would then only contain the product specifications and the RFID tag does not need
to be altered in case of change of inventory threshold.

The information model described in this section defines the entities and relationships
between these entities for a weighing module system. It is important to map all possible
(raw) data in the model so that the relationships are clearly defined. This model is then
used to create the weighing module ontology in the following section.

5.2.2 Weighing module ontology

An ontology is a formal way of explicitly defining entities and the relationships between
them as discussed in Section [3.6] This facilitates discourse among engineers and agents
and enables domain knowledge being taken into account while reasoning about the sys-
tem. Here ontologies and their use are discussed in the context of weighing module.

44

CHAPTER 5. CONCEPT

Weighing sensar |- -« -

Weighing n Weighing 1
hodule System module

Container RFID tag

Figure 5.7: Shows the alternate possible configuration, Weighing module contains
Weighing sensor and Container. The Container has an RFID tag
nested inside it. Though it depicts the physical setup better, it increases
hierarchy, and does not depict the informational independence between the
two sources. This model, hence, is unnecessarily more complex and con-
strained.

As discussed in Section [3.5] an assistance system consists of a central system and one or
more CPS modules. As a part of this thesis, weighing module’s ontology is designed and
the module is added to assistance system. Information model designed in the previous
section describes a weighing module. Weighing module, as shown in Figure[5.5 has one
or more weighing sensors with RFID reader attached to each module. A container with
parts is kept on each weighing module and an RFID tag is attached to each container:
RFID tags link product/part to containers. The RFID tag has the part information as
described in the information models (see Figure 5.7).

Ontology building starts with creating an upper ontology for the assistance system. This
upper ontology consists of the common knowledge base for all CPS modules attached
to assistance system and provides basic vocabulary for the modules. In the presented
example, the relationships between upper ontology of the assistance system, weighing
module ontology and a basic eye-tracking (as an example of a third party module) are
shown.

Upper ontology for the complete assistance system is developed by stakeholders as dis-
cussed in Section [3.6.1] Upper ontology can only be changed with the consensus of all
stakeholders when the central system grows to accept more kinds of data (through new
modules) to augment its intelligence. These are necessary changes in the basic vocabulary
required by the system.

45

CHAPTER 5. CONCEPT

Total
1 - weight
----- wyeighing sensor
Sensar
- precision

Figure 5.8: Shows configuration of Weighing sensor. Weighing sensor has values
of Total weight reported by sensor and Sensor precision.

)

1 1
T <> >

Talerance
ofweight

Figure 5.9: Shows configuration of RFID Tag. RFID Tag links Product to the system.
RFID Tag contains part Name, Weight and Tolerance of part weight.

Upper ontology of an assistance system has a minimal set of definitions and axioms
relating entities. The entities defined in upper ontology are imported by central system
and CPS modules. The import of entities facilitate the exchange and understanding
of the (minimal) data between modules through common definitions and IRIs. IRIs, as
discussed in Section [3.6] are the Internationalized Resource Identifiers used for unique
nomenclature of entities and axioms. This is the minimum data that the central system
needs to use the module effectively in assisting the worker. In the next step, ontologies for
CPS modules are created using the information models developed. How these ontologies
are organized will be discussed in the next section. CPS modules import upper ontology
of assistance system to ensure that the interacting variables are defined once in the
complete system. For example, weighing module has to at least report the name and
number of parts taken-out/kept-in container to the central system. In order to report the
change in the number of parts, both central system and weighing module system should
have a common vocabulary for the part name and number of parts. These variables are
defined in upper ontology of assistance system as hasPartName and hasTotalParts.
Hence, by importing the assistance system upper ontology, weighing module system
ontology ensures that it shares the common representation of the interacting variables

46

CHAPTER 5. CONCEPT

1 1
Pasition has Coordinates 0 °

Dimensions

1

Irventory
threshold

Figure 5.10: Shows configuration of Container. Container has information about its
Weight, Dimensions, Position and Inventory threshold for a part.

hasPartName and hasTotalParts and their associated restrictions and relationships.
Similarly, interacting variables for other modules are defined in upper ontology. However,
it is noteworthy that the variables imported by weighing module can be augmented, i.e.,
axioms and properties pertaining to the imported variables can be added in the weighing
module ontology and this addition will not be reflected in upper ontology. If changes are
required in interacting variables by both central system and CPS modules, it has to be
changed in upper ontology. Upper ontology changes are infrequent and need consensus
of all stakeholders.

Next, interoperability of data between weighing module and hand-tracking module is
explained. Two possible ways of sharing data between the two modules are presented
and discussed in detail:

Decentralized Organizational Scheme

In this section, a decentralized organizational scheme for the ontologies is described. See
Figure for a visual description. As shown in Figure [5.11] upper ontology of assis-
tance system is designed. To recap, upper ontologies of modules are created from their
information models. Weighing module ontology is described using its information model.

47

CHAPTER 5. CONCEPT

These upper ontologies consists of definitions and axioms of entities and relationships
between them. Upper ontologies of all modules import the upper ontology of assistance
system as discussed above. So the basic vocabulary described by upper ontology of as-
sistance system is imported by the modules’ ontologies. As information model maps all
possible data, weighing module upper ontology will contain axioms and definitions which
are needed for the weighing module system, but are not required by the central system
ontology. An example of this can be position of container (x, y, z). This allows for
flexibility in implementation of weighing module system. If another module requires data
regarding container position, ontology of that particular module can import the weighing
module upper ontology.

Design. Figure |5.11| shows the upper ontologies of assistance system, weighing module
and eye-tracking module. Upper ontology of assistance system describe minimal data
required for interaction between central system and both the modules. Upper ontologies
of weighing module and eye-tracking module describe all relevant data of the modules.
Both weighing module, eye-tracking module and central system ontologies import assis-
tance system upper ontology to ensure that the entities used to share data are uniquely
defined and all ontologies access the same IRl where required.

As an example, weighing module needs to report the part name and change in number of
parts to the central system. Therefore, these data properties, hasTotalNumberOfParts
and hasPartType, are defined in the upper ontology of assistance system. From there,
it will be imported into the central system ontology and the weighing module ontology.

To facilitate interoperability of data between modules, both the interacting module on-
tologies should have definitions and axioms of entities pertaining to the required data.
Here eye-tracking module is taken as a sub-system developed by a third party vendor.
For example, the eye-tracking module needs the position of containers kept on weighing
module to calibrate itself. This information was mapped in the information model of
weighing module and weighing module upper ontology describes the position of class
Container as a data property (x, y, z). Hence, eye-tracking module ontology can
get definitions and axioms corresponding to (x, y, z) by importing the upper ontology
of weighing module system. This is the most crucial feature of this design.

Deployment. Figure |5.12| shows the deployment phase for the assistance system. The
weighing module will create instances of the WeighingSensor class and assign their
hasTotalWeight and hasPartType properties. Additionally, other properties will also
be assigned, e.g. dimensionsOfContainer, which are defined in the weighing module
upper ontology. During deployment, these instances with their properties will be com-

48

CHAPTER 5. CONCEPT

/'/ Upper Ontolagy of ™ Third party |
SmartFactoryKL | A55|starllce System \
\ (Axioms +) /f

Definitions) _

:
I ; A

/"'-’ T] //We\ghing Moduleﬂ.-—'"\
/ Central System \ { Upr:;IOHtDLogy \
A / b ioms /
N Ontology //, _“.. Definitions) ’/

/"'-’_E ye-trackin g L
{ Module Upper A

Ontology (Axioms /
\\- + Definitions - /

Assistance System Upper Ontology Import

Modules” Upper Ontologies Import Third party Il

Figure 5.11: Schematic description of upper ontologies of assistance system and mod-
ules. All module ontologies import assistance system upper ontology. Eye-
tracking ontology imports weighing module upper ontology to access enti-
ties/relationships of weighing module.

municated back to the central system and eye-tracking module can query the central
system for the individual values for positions of different containers. While deploying the
system, individuals are created in weighing module system ontology which in turn imports
both upper ontologies of both assistance system and weighing module system as shown
in Figure 5.12]

Pros & Cons. This design focuses on building a completely decentralized system.
The central system’s ontology will only contain the minimal taxonomy of entities and
properties which are necessary for the Central System to function, i.e., be able to use
the information from the modules effectively (see Section for how to design the
vocabulary). However, the individual modules are free to report any variable which they
can measure and to report it to the central system. The central system will store that
information even if it may not have explicit uses for the variables but can produce this
knowledge if a different third party module requests for it through SPARQL queries.

Hence, if the eye-tracking module requires the container position coordinates (x, y, z)

49

CHAPTER 5. CONCEPT

~ Upper Ontology of \\ l __ Third party|

/" hssistance System \ o~
SmartFactoryKL | {Axioms‘i) /,Weighing Module "‘-\
__ A / Upper Ontology \

Pffll‘llt\ol'lf::_’____/-’ ':\ (Axioms + /
T \.‘E_ § Definitions) ’/
/Y

If/ Central System \-.'_ _______________ >|/ Wei%hri‘rsgl :;;m”e \-.I
_ Oy / N (ndviduals) S
— LT
[
_________________________ e
[
I
I
I
I — e
______________________ g . e Eye-tracking
. ; 7/ Eye-tracking Y / Module Upper ™~
' Module Ontology “‘_—'\ Ontology {Axioms /‘I
~— {Indlwdua\s}_ _ ~_* Deﬁnitiorls_r__,

Assistance System Upper Ontology Import
Modules” Upper Ontologies Import Third party Il

Communication

Figure 5.12: Schematic description of ontologies while deployment. Module ontologies
import upper ontologies of assistance system and their own upper ontologies.
Individuals are created while deployment.

from the weighing module, and it was known during the design of the eye-tracking module
that the weighing module’s ontology does have this information, the eye-tracking module
can write a SPARQL query to ask the central system for these coordinates (using IRIs it
imports from the weighing module ontology, i.e. the IRI for the relations hasX, hasY,
hasZ). If the weighing module attached to the central system has indeed reported the (x,
y, z) coordinate values, they will be returned to the eye-tracking module. Otherwise,
the eye-tracking module may have to fall back to manual calibration. Eventually, if the
properties are found to be useful in general, the upper ontology of the weighing module
and made it a standard way of reporting the value. This method, hence, allows any
two teams to communicate and to mutually agree on how best they can share data and
promotes rapid prototyping.

However, such a setup has the disadvantage that independent teams may reinvent proper-
ties independently and since these properties will have unique IRI (e.g. TeamA:hascoordinateX,
TeamB:hasX and TeamC:hasPositionX) but with the same semantic meaning. This
would complicate interoperability across modules and for the same information from dif-
ferent weighing modules the eye-tracking module will have to query independently. Figure

50

CHAPTER 5. CONCEPT

Weighing module ontologies

TeamA TeamB TeamC

&
7 E
/? % o §
QSC\ ﬁ g .
Mg O @
Py e o <
ek e [/ Y _I
Py
T TTmmmmmmm - [I'f :I }}
. - p A
3 queries A I/_x_‘_l I,J.\/I\ e
NS WS WS

Eye-tracking module ontology Central system

Figure 5.13: Shows an example of reinventing variables that have same semantic mean-
ing. Here container position coordinate x is described by three different
teams as hasCoordinateX, hasX and hasPositionX.

[5.13 shows an example of such a situation where teams A, B and C independently define
the variable for position of container as hasCoordinateX, hasX and hasPositionX.
Eye-tracking module needs the position coordinates then it would be required to import
all the three weighing module ontologies and query for them individually which increases
its work and making the system more error prone. On the other hand, if the teams follow
a particular nomenclature for defining variables would avoid reinventing similar variables
which reduces the number of both imports and queries. Consolidation of the property
names may also suffer due to the Not-Invented-Here syndrome [KA82].

A more subtle, and potentially more dangerous, side-effect of this design is compromised
security of the data stored in the central system. In this design, the central system is
completely unaware to the features which are being developed by independent modules.
Hence, the central system will need to be excessively permissive when it comes to allowing
arbitrary SPARQL queries by third party modules to run against the data stored it has
stored. A malicious module can very easily take advantage of vulnerability to obtain data
on the central system. An example of such a query is shown in 5.1} This simple query
can fetch complete data stored in the central system.

51

CHAPTER 5. CONCEPT

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf —syntax —ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdfs: <http://www.w3.0org/2000/01/rdf —schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?subject 7predicate 7object
WHERE { ?subject ?predicate ?object }

Listing 5.1: An example of a SPARQL query which will fetch all triples and hence
complete data on the central system.

Keeping these concerns in mind, another solution is proposed which trades-off complete
decentralization in favour of a W3C committee like setup where a formal specification (i.e.
a mid-level ontology) is maintained by a committee which consists of all stakeholders. Its
organizational scheme and benefits (i.e. enhanced security and prevention of re-invention
of properties) will be discussed in the next section.

Centralized Organizational Scheme

This section describes a centralized organizational scheme for the ontologies. As shown
in Figure [5.14] upper ontology of assistance system is created which consists of the
basic vocabulary for the complete system. The upper ontology consists of definitions and
axioms of entities and relations between them. Then a mid-level ontology is created. This
mid-level ontology imports the upper ontology of assistance system. Further, the mid-
level ontology describes the entities of all other modules. Depending on the engineers
describing the mid-level ontology, all or some of the significant entities used by other
modules are defined in the ontology.

The idea behind creating a mid-level is to create a repository of all relevant entities
described in any CPS module. This simplifies the search by engineers for variables required
by other modules. Mid-level ontology collects entities and their definitions described by
upper ontologies of modules to facilitate exchange of data and this differentiates the
approach from the previous approach. An assistance system upper ontology defines the
minimal variables requires by modules to send data to the central system. This ontology
is governed by the highest level committee and usually changes to it will be made when
new modules are attached to the assistance system. On the other hand, modifications
can be done easily in mid-level ontology which gives engineers the freedom to extend and
access variables.

52

CHAPTER 5. CONCEPT

All modules’ upper ontologies import the mid-level ontology. All modules need to import
the mid-level ontology only once as it has all entities defined in the complete system.
Discussing the previous example in the context of new design, if another module re-
quires position of container (x, y, z), it does not need to import weighing module (in
which these variables were defined earlier) upper ontology because mid-level ontology has
definitions and axioms of (x, y, z).

//,.,- Upper Ontology Df-n-""\
{ Assistance System \ Third party |

A (Axioms +
\\ Definitions) ’_,/

SmartFactoryKL

o= T
e — / Weighing Module ™

7 Middevel N (“"f;;f;‘f‘f’g")

{ Ontology (Axioms) A ; i

\._ +Definitions) /" ~ ~~ --.__?Eﬂmt'ons_}_,-’/
If/ Central System

\ Ontology

/"'-’_E ye-trackin g L
{ Module Upper A

Ontology (Axioms /
_ + Definitions - /

Assistance System Upper Ontology Import

Mid-level Ontology Import Third party Il

Figure 5.14: Schematic description of upper ontologies and mid-level ontology. Mid-level
ontology imports upper ontology of assistance system. Mid-level ontology
contains entities present in all modules. Modules' upper ontologies import
mid-level ontology.

Design. Figure [5.14|shows the upper ontologies of assistance system, weighing module,
eye-tracking module and a mid-level ontology. Upper ontology of assistance system
describes minimal data pertaining to basic vocabulary of the complete system. Mid-level
ontology is a bigger ontology describing entities of all modules. Thus, the mid-level
ontology has definitions of all relevant data present in the complete system. Upper
ontologies of all modules import the mid-level ontology. Hence, all module ontologies
have definitions of all entities present in the system and all entities are defined only once
and thus have unique IRlIs.

53

CHAPTER 5. CONCEPT

As an example, weighing module imports the data properties, hasTotalNumberOfParts
and hasPartType defined in the upper ontology of assistance system through import
of mid-level ontology. This prevents defining similar entities twice by different teams
because there is a centralized list of entities.

Further, eye-tracking module needs the position of containers kept on weighing module for
calibration. Though this information was mapped in the information model of weighing
module, but the mid-level ontology has definition of class Container which contains
data properties (x, y, z). Since all modules import the mid-level ontology, all modules
have all the data described in the mid-level ontology.

/'//--Upper()ntnlogy Df--.x"‘\\ , /
SmartFactorviL { Assistance System Y e —_ Third party |
martFactory \ (Axioms + i —~
2. ghing Module .
_ Definitions) _/_,/ I'./ Upper Ontology \
B - \ (Axioms + /
I \-_ Definitions) ’/
7 Middevel ™~
[Ontology (Axioms)
S + Definitions) o
Ia/ Central System \.I < i /7 Wei %;]r:rt‘gl ol'v;d Wls \.I
Ny s A e >\ (ndviduals)
— T
__________________________ e
I
I \ T — T
' - . T Eye-tracking
. L Eye-tracking Y / I ™
e === Module Ontology oe—t LU

]
N / Ontology (Axioms. /
__.. {Individuals) // _\7..__ + Dafinitions __/./

Assistance System Upper Ontology Import
Mid-level & Modules' Upper Ontologies Import i Third party Il

Communication

Figure 5.15: Schematic description of ontologies while deployment. Modules import their
own upper ontology. Instances are created during deployment.

Deployment. Figure [5.15/shows the deployment phase of the system. Individuals of the
WeighingSensor class which assign their hasTotalWeight and hasPartType proper-
ties are created during deployment. Additionally, other properties will also be assigned,
e.g. dimensions0fContainer, which are defined in the mid-level ontology. During de-
ployment, these instances with their properties will be communicated back to the central
system and eye-tracking module can then query the central system for the individual
values for positions of different containers. While deploying the system, individuals are

54

CHAPTER 5. CONCEPT

created in weighing module system ontology which in turn imports both upper ontologies
of both assistance system and weighing module system as shown in Figure [5.15]

Further, upper ontologies of modules are created which are imported by modules during
deployment. As shown in Figure [5.12, modules import upper ontologies and create
individuals.

Pros & Cons. In comparison with the more decentralized structure given in the previ-
ous section, the benefits and costs of this design are apparent. First of all, the mid-level
ontology can be viewed as a white-list of entities and properties which can be read from
the central system during execution through SPARQL queries. This prevents reinvention
because a cursory check through the mid-level ontology will show that the properties al-
ready exist for the module being developed. Further, each module can individually extend
the entities imported from mid-level ontology. These extensions are local and are not
propagated to the mid-level ontology, thus modules may again reinvent variables. These
extensions can be made directly in the mid-level ontology to avoid reinvention on the next
level. For example, engineers working on weighing module import a class Container from
the upper ontology of assistance system and further add property hasContainerColour
pertaining to the colour of container. This property is described locally in the weighing
module ontology and is not propagated to upper ontology of assistance system and other
modules importing this ontology. However, whether these extensions should be a part of
the mid-level ontology is not discussed in this thesis and can be seen as a future work.

Because of the white-list provided by the mid-level ontology, the central system can
also put in place a system for authorizing certain (known) modules to have access to
information which is not available to other modules. This allows security sensitive data to
be inaccessible from potentially malicious or unknown modules. The exact authorization
and authentication mechanism will depend on public key cryptography [Smi01], which is
out of scope of this work.

Pair-wise collaboration of teams is not encouraged in this setup. This can be a potential
downside of the organizational scheme. This may increase the development time for a
particular module if the properties it needs to import are not in the white-list already
and the decision and procedure of whether to add these properties might take longer
compared to the previous design scheme.

In the next step, weighing module ontology is merged with the central system ontology
at the class WeighingSensor. Now central system and weighing module ontologies have
the same data properties, hasPartName and hasTotalNumberOfParts, facilitating data
exchange and updates between central system and CPS modules. The modules can query

55

CHAPTER 5. CONCEPT

the central system to obtain data about its and about other modules’ states.

5.3 Implementation in Protégé

This section deals with implementing the ontology of assistance system discussed so far.
The assistance system considered in this implementation has a central system, weighing
module and a basic eye-tracking module.

Ontology referred to thus far is a mesh of information read and understood by humans.
The need of encoding this information in a machine interpretable language has led to the
development of a number of languages. These languages are being developed in various
fields and with different goals in mind. Presently, there is no consensus regarding the
de facto language to be used for developing ontologies but OWL is regarded as the best
language in this regard as it is specifically developed by the W3C for ontologies.

Among the available platforms, Protégé, developed by Stanford Medical School is one
platform which can be used while developing ontology for the presented assistance sys-
tem. It is a free, open source ontology editor and a knowledge management system
for developing intelligent systems. Protégé provides a graphic user interface to define
ontologies, thus enabling modeling at a conceptual level that allows stakeholders to think
in terms of concepts and relations in the domain [Noy-+01]. It is an easy-to-use platform
with sufficient flexibility and clarity. Based on the information model, ontologies are
created in Protégé.

5.3.1 Implementation of decentralized organizational scheme

This section describes the implementation of the decentralized organizational scheme of
ontologies. Interoperability between modules is established in Protege through SPARQL
queries. First, creation of assistance system upper ontology is discussed followed by
creation of modules’ ontologies and their imports.

Assistance System Upper Ontology

First step of implementing the system is creating upper ontology of assistance system.
It consists of the minimal data required by the central system from various modules.
The minimal data is defined as sufficient statistic for a particular module is required to

56

CHAPTER 5. CONCEPT

Classes | Object properties | Data properties = Annotation properties

B O owl:Thing |
WeighingSensor
RFID
Eye-trackingSensor

Figure 5.16: Shows classes defined in upper ontology of assistance system. These classes
are imported by weighing module, eye-tracking module and central system
ontologies.

exchange and understand data between central system and the module. Upper ontology
of assistance system is created once at the beginning of design phase of the complete
system. However, minimal data for new incoming modules can be added when required.
Here an assistance system with a central system, weighing module and a basic eye-
tracking module is considered. Weighing module reports part name and change in part
to the central system whereas eye-tracking module reports cognitive load of worker to the
central system. Thus, upper ontology of assistance system contains these three variables
as hasPartName, hasNumberO0fParts and cognitiveLoadOfWorker. hasPartName is
of type string, hasNumberOfParts is of type integer and cognitiveLoadOfWorker
is of type boolean indicating cognitive load level low or high. As described in the
information model, hasPartName is a data property of RFID tag, hasNumberOfParts
is a data property derived from hasTotalWeight which is defined in weighing sensor
and cognitiveLoadOfWorker is a data property of eye-tracking module. Thus, RFID,
WeighingSensor and Eye-trackingSensor classes as defined in the upper ontology of
assistance system as shown in Figure [5.16] Consequently, the data properties discussed
above are also defined in this ontology as shown in Figure [5.17|

Modules Upper Ontology

In the next step, upper ontologies of weighing module and eye-tracking module are
created. Both modules import upper ontology of assistance system and add entities
as required. Weighing module ontology maps all data described in the information
model in the previous section. Data properties, hasPartType, hasPartWeight and
hasPartWeightTolerance are added in the imported class RFID. It is noteworthy that

57

CHAPTER 5. CONCEPT

Classes Object properties Data properties | Annotation properties

Data property hierarchy: owl:topDataProperty

- [
v owl:topDataProperty
- hasNumberOfParts
M hasPartName

M cognitiveLoadOfWorker

Figure 5.17: Shows data properties defined in upper ontology of assistance system. These
data properties are the sufficient statistic required by central system to
receive information from modules.

the data added to an imported class is not reflected in the ontology from which the class
is imported.

Classes Object properties = Data properties Annotation properties

Y
) Container
Eye-trackingSensor
RFID
WeighingSensor

Figure 5.18: Shows weighing module ontology. It imports upper ontology of an assistance
system and adds data locally. Container class is defined locally in weighing
module ontology.

Thus, these changes are local and do not affect the upper ontology of assistance system.
This is one of the limitations of ontologies that data changed in an imported entity does
not transcend to the complete system. This can lead to duplication of data if more
than one module augment similar data. This discussion is not in the scope of this work.
However, to avoid such situation, teams developing modules need to interact while adding
new data to imported entities or they should propose the inclusion of their addition to
the maintenance, i.e., stakeholders, of the mid-level ontology.

Similarly, data properties hasTotalWeight is added to the class WeighingModule.
Data properties pertaining to weight: hasContainerWeight, dimensions of container:

58

CHAPTER 5. CON

CEPT

Figure 5.19: Shows data properties of weighing module ontology.

Active Ontology = Entities x Individuals by class = OntoGraf =

|Classes Object properties | Data properties | Annotation properties

Data property hisrarchy: owl:topDataProperty

T- ES

owl:topDataProperty
™ hasPartWeightTolerance
~m hasInventory
~—mmhasTotalWeight
~m hasPartweight
= hasPartType
 hasContainerWeight
™ hasHeight
- hasBreadth
-~ hasLength
- hast
. hasy
 hasX
m cognitivelLoad OfWworker
- hasMNumberOfParts
- hasPartName

Apart from

hasPartName, hasNumberOfParts and cognitiveLoadOfWorker all
other data properties are defined locally.

hasLength, hasBreadth, hasHeight and position coordinates: hasX, hasY, hasZ are
defined in class Container as shown in Figure |5.19. Protégé has visually differentiated

the entities described

Figure 5.20: Shows
Contain
ontology.

locally using bold font.

Active Ontology x [Entities x | Individuals by class x| OntoGraf x

Classes | Object properties | Data properties | Annotation properties

Object property hierarchy: hasProductDetailsOF

Ta| S| 3

v owl:topObjectProperty
~-mmhasRFIDTag
- mmisKeptOn
-~ mmhasContainer
-~ mMprovidesDataTo
“..mm getsDataFrom

relationships between objects WeighingSensor,

RFID &

er. These object properties are defined in weighing module

59

CHAPTER 5. CONCEPT

WeighingSensor-RFID relationship is described as:

e WeighingSensor getsDataFrom RFID

e RFID providesDataTo WeighingSensor
WeighingSensor-Container relationship is described as:

e WeighingSensor hasContainer Container

e Container isKeptOn WeighingSensor
RFID-Container relationship is described as:

e RFID hasProductDetailsOf Container

e Container hasRFIDTag RFID

Eye-tracking is taken as a dummy module to discuss interoperability between modules.
The sufficient statistic for eye-tracking module is the level of cognitive load of worker.
This is defined as a boolean where 0 means low and 1 means high. The module should
report this boolean variable to the central system. Hence, upper ontology of assistance
system defines class Eye-trackingSensor and data property cognitiveLoadOfWorker
as the minimal data required to receive information from eye-tracking module. Eye-
tracking module needs the position of containers kept on weighing module for calibration.
The position coordinates are defined in weighing module ontology. Therefore, to obtain
the position coordinates (x, y, z), eye-tracking module ontology imports weighing
module ontology. Figure |5.21| shows data properties imported by eye-tracking module
ontology.

5.3.2 Implementation of centralized organizational scheme

Centralized organizational scheme of ontologies described in section solution is imple-
mented here. Since upper ontology of assistance system is discussed in the previous
section, it is not defined again in this section. Mid-level ontology, which differentiates
the two solutions, is discussed in this section. All ontologies describing both the organiza-
tional schemes are created in Protégé. These ontologies are provided in digital appendix
attached with the thesis.

60

CHAPTER 5. CONCEPT

Active Ontology x Entities x| Individuals by class x | OntoGraf x

Classes Obiject properties = Data properties = Annotation properties

T x4
v owl:topDataProperty

- cognitiveLoadOfWorker
WM hasBreadth
M hasContainerWeight
M hasHeight
B hasInventory
mmhasLength
M hasMumberOfParts
W hasPartName
- HMhasPartType
- hasPartWeight
—- W hasPartWeightTolerance
- hasTotalWeight
B hasx
. hasY
M hasZ

Figure 5.21: Shows data properties of assistance system upper ontology and weighing
module ontology imported by eye-tracking module ontology.

Mid-level Ontology

Mid-level ontology serves as a bridge between the assistance system upper ontology
and upper ontologies of all modules. Upper ontology of assistance system has classes :
WeighingSensor, RFID & Eye-trackingSensor and their data properties : hasNumberOfParts,
hasPartName & cognitiveLoadOfWorker respectively as described in Section [5.3.1]
Mid-level ontology imports the upper ontology of assistance system and further defines
data of other modules in order to provide a repository for other modules to fetch data.
Weighing module contains a weighing sensor, an RFID and a container. WeighingSensor
and RFID classes are already imported and Container class is defined in the mid-level
ontology. Furthermore, all or some data properties described in the information model
are defined in the mid-level ontology as decided by engineers developing various modules.

For example, all data properties of weighing module can be defined in mid-level ontology
whereas only few data properties of container and RFID as shown in Figure [5.22] Data
properties: hasLength, hasBreadth, hasHeight, hasInventory of class Container
are defined in Weighing module upper ontology. Similarly, data property hasPartWeight
is defined in class RFID.

61

CHAPTER 5. CONCEPT

Classes Obiject properties | Data properties Annotation properties

v
~-mmhasPartWeightTolerance
MM hasSensorPrecision

mm hasTotalWeight
M hasPartType
mm hasContainerWeight
M hasZ
M hasY
~-mmhasX
- cognitiveLoadOfWarker
~-EmhasNumberOfParts
~-mmhasPartName

Figure 5.22: Shows data properties of mid-level ontology. Mid-level ontology imports
upper ontology of assistance system and defines data properties of mod-
ules. Mid-level ontology may define all or some data properties of modules
depending on design.

Object properties are defined as shown in Figure[5.20L Modules import mid-level ontology
and add data when required. This design helps engineers to build a list of entities which
is accessible by all modules. It also helps in building a more secure system using the list of
permissible entities for which a module can query. Further, checks can be implemented
on the entities a particular module can query. In the next step, deployment is of the
ontologies is discussed.

5.3.3 Deployment

During deployment, the ontologies created thus far are imported by modules. At this
stage, individuals are created according to the setup of system. As discussed earlier, the
assistance system has a central system, a weighing module and an eye-tracking module.
Weighing module, further, has three containers, weighing sensors and RFID tags. These
individuals are defined as shown in Figure [5.23] Individuals are defined and described in
the deployment for both classes imported from other ontologies and classes defined in
the particular ontology. Examples of each object are discussed next in the section.

Class WeighingSensor has three individuals as shown in Figure [5.23] Each individ-
ual is defined and described by assigning values to data properties. Axioms of class
WeighingSensor are inherited by the individuals of the class. Object properties define re-

62

CHAPTER 5. CONCEPT

Individuals: Containerl

¢ X
& Container2

& cContainer3

& RFID1

& RFID2

& RrRFID3

& weighingSensorl
& weighingSensor2
& WeighingSensor3

Figure 5.23: Shows individuals created during deployment. Weighing module has three
WeighingSensor, RFID & Container.

lations between objects: WeighingSensor1 hasContainer Containerl and WeighingSensor1
getsDataFrom RFID1. Similarly, other individuals of class WeighingSensor are defined.

Property assertions: WeighingSensorl mE=EE

® hasContainer Containerl
®u getsDataFrom RFID1

" hasTotalWeight "265.0"~*xsd:double
m hasNumberOfParts 49
m hasSensorPrecision "1.0"~“xsd:double

Figure 5.24: Shows values of data properties of WeighingSensorl and its relation with
RFID1 & Containerl.

Class Container has three individuals Container1, Container2 & Container3. De-
scription of Container1 is shown in Figure[5.25 by assigning data properties to it. Object
properties are defined as relationship between classes. Container1 has two object proper-
ties: Containerl hasRFIDTag RFID1 and Containerl isKeptOn WeighingSensorl.
Similarly, Container2 and Container3 are described.

Class RFID has three individuals RFID1, RFID2 & RFID3 as shown in Figure[5.23] RFID1 is
described by assigning values to data properties. Object properties are defined as: RFID1
providesDataTo WeighingSensorl and RFID1 hasProductDetailsOf Containerl.
Similarly, other container individuals are described.

There are data properties whose values are not explicit in the system, i.e., these values

63

CHAPTER 5. CONCEPT

Property assertions: Container1
I
= hasRFIDTag RFID1
M isKeptOn WeighingSensorl

Data propatty assuit
s hasContainerweight “150.0"~~xsd:double
mm hasBreadth "9.0"~~xsd:double
™ hasinventory 2
®® hasHeight “7.5"~~xsd:double
mmhasLength "15.0"*~xsd:double
M hasX "0.0"~~xsd:double
mhasY "0.0"~~xsd:double
®mhasz "0.0"~"xsd:double

Figure 5.25: Shows values of data properties of Containerl and its relation with RFID1
& WeighingSensorl.

Property assertions: RFID1

Object property assertions
®providesDataTo WeighingSensorl
m hasProductDetailsOf Containerl

Data property assertions
M hasPartWeightTolerance "0.1"~*xsd:double
M hasPartType “Screw"~~xsd:string
M hasPartName "M2"~~xsd:string
mm hasPartWeight "5.4"~~xsd:double

Figure 5.26: Shows values of data properties of RFID1 and its relation with Container1
& WeighingSensorl.

are not predefined information as RFID data or raw values from sensors. These data
properties are processed before merging ontologies. For example, total number of parts
in a container is calculated as follows:

hasTotalWeight
hasPartWeight

hasTotalNumberOfParts =

(5.1)

where, hasTotalWeight is the value provided by weighing sensor and hasPartName is
the data provided by RFID tag.

Furthermore, the value of hasNumberOfParts can be refined to get more accurate result.
For example, values of hasSensorPrecision and hasPartWeightTolerance can be
used to error proof the value of hasNumberOfParts. Additionally, moving average of
sensor values can be used to improve the accuracy of the system. The problems faced
during implementation of weighing module are discussed in Chapter [f]

04

CHAPTER 5. CONCEPT

SPARQL Query

SPARQL is a semantic query language for database and is used to retrieve and manipulate
data stored in RDF format as discussed in Section [3.6.4, Code Snippet ?? is used by
eye-tracking module ontology to query the position of containers (x, y, z).

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf —syntax—ns#>

PREFIX owl: <http://www.w3.0org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf —schema#>

PREFIX xsd: <http://www.w3.o0rg/2001/XMLSchema#>

PREFIX central: <http://www.semanticweb.org/thesis/
UpperOntologyWeighingModule#>

SELECT ?container 7?x 7y 7z

WHERE { ?7container central:hasX 7x
?container central:hasY 7y
?container central:hasZ 7z . }

Listing 5.2: Example of SPARQL query. Eye-tracking ontology imports weighing module
upper ontology to get definitions of container coordinates and then queries
hasX, hasY, hasZ.

Prefix central is used to import the upper ontology of weighing module. Eye-tracking
module ontology gets definitions and axioms of variables hasX, hasY and hasZ by im-
porting central. Now it can query the central system for values of these variables. The
query has four variables: 7container denotes container name and 7x 7y 7z denote
x,y, z coordinates of the container. These (x, y, z) coordinates can be the coordi-
nates of the upper left corner of container or center of container depending upon the
design opted for by engineers. Further, information about length, breadth, height of con-
tainer can help other modules to ascertain position of workers' hands and eyes in relation
to the container’s position.

Figure [5.27] shows an example of the values returned by the central system against the
SPARQL query 5.2l These values correspond to the position coordinates of individuals
of class Container created during deployment stage in weighing module ontology. This
is the ontology import in decentralized scheme of ontology organization where weighing
module upper ontology has all variables defined and described pertaining to weighing
module. Eye-tracking module imports the upper ontology of weighing module.

In a centralized scheme of ontology organization, mid-level ontology contains definitions
and axioms of all variables present in all modules. The mid-level ontology is imported

65

CHAPTER 5. CONCEPT

container x y z
Container3 "0.0" "e0.0"" 000"
Containerl "o.0""o.0"~"o.0"e
Containerz "0.0" 30,000

Figure 5.27: Shows values returned by the SPARQL query for position of containers.
Values returned show container names and their corresponding (x, y, z)
coordinates.

by eye-tracking module ontology instead of weighing module upper ontology to access
positions of containers. Thus, the prefix in the SPARQL query will change to the address
of the mid-level ontology instead of the upper ontology of the weighing module: PREFIX
central: <http://www.semanticweb.org/thesis/midlevelontology#>.

66

6. Implementation

This chapter deals with issues that may arise while deploying the system. These are the
problems faced during implementing weighing module. The implementation dealt with
reading data from weighing sensors and RFID tags, processing the data and sending the
required information to central system of assistance module.

First phase of implementation for weighing module is completed. This includes reading
data from sensors and recognizing RFID tags through RFID readers. Sensor data and
part information from RFID tags are used to provide information about the part in each
container. In the present scenario, Rapsberry Pi (RPi) attached to weighing module
provides information about part name, total number of parts contained in each container
and change in the number of parts for each container to a central system. RPi also sends
a message to signal low inventory for parts if number of parts in a container drops below
a threshold level.

In the next phase of implementation following features should be added to the system:

e Central system contains data in an ontology. This means that it should be able
to receive updates in form of partial / complete ontologies and answer SPARQL
queries.

e Weighing module should communicate its readings to the central system through
a partial / complete ontology transfer.

e Third party module should be able to query data using SPARQL queries.

Figure 6.1 shows the setup of weighing module used in implementation. Weighing module
has three weighing sensors with container kept on each sensor. Further, an RFID tag is
attached to each bin. RFID tags contain data regarding parts, for example type of part,
part name which can be read by RFID readers kept on weighing sensors as shown in the
figure. However, it is noteworthy that there is a scope of human error in this scenario as
the part details are entered manually and while filling the container it should be ensured

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 67
Semantically Described CPS Module

CHAPTER 6. IMPLEMENTATION

Weighing Module

Container
RFID Readear

Weighing 5;;1:sor Raspberry Pi

Figure 6.1: Shows weighing module used for implementation. Module consists of three
weighing sensors, each with a container and an RFID reader. Weigh-
ing sensors and RFID readers are connected to Raspberry Pi. Source:
SmartFactory*t.

that container has the corresponding parts. This, indeed, can be one area of further
improving the system and making it error proof.

This chapter discusses various hardware and communication choices available for imple-
mentation and makes recommendations based on the issues faced chronologically during
implementation. First, different hardware options and procedures are discussed followed
by communication between the central system and the weighing module. In the end,
some implementation recommendations are made.

6.1 Hardware Design

As discussed in Section an assistance system consists of a central system and CPS
modules. In this implementation, weighing modules are the only kind of module attached
to the central system.

In Figure [6.2] each shelf has one weighing module. The weighing module may have one
or more weighing sensors depending on its configuration. In this case, each weighing
module has three weighing sensors. These sensors can be configured to perform within

68

CHAPTER 6. IMPLEMENTATION

n
n
L}
n
n
u
-
2

Figure 6.2: Shows an example of a possible setup of weighing modules in an assistance
system. An assistance system can have more than one weighing module.
Source: SmartFactory®t.

a set range of load capacity and precision. Hence, during configuration each sensor's
precision settings can be individually set.

Mettler Toledo provides the weighing module and the tools to interact with the module.
Using these tools, weighing sensors can be configured, calibrated and read/tested. Fig-
ure [6.3] shows the interface of the tool, named Speed, used to configure the weighing
sensors. The weighing sensors could be calibrated from 1 gram to 20 gram. In this
implementation, sensors have precision of 1 gram, 2 gram and 10 gram.

Calibration of the sensors avoids any discrepancies in weights. Calibration follows a
procedure wherein weighing module number and weighing sensor number are given to
calibrate the weighing sensor against dead-load. The Weighing module’'s manual, which
describes the calibration procedure in detail, is attached in the digital appendix of the
thesis. Dead-load are the loads that remain constant over time including the weight of
structure and immovable fixtures. Since each weighing sensor has a standard container
and an RFID reader, the weights of these two entities are included in the dead-load of
weighing sensor for the ease of calibration procedure. Including the weight of container

69

CHAPTER 6. IMPLEMENTATION

¥ Speed Scale Tool ¥0.07

%

' METTLER ~ TOLEDO

AN

*English kT

Current Scale ID |1 Current Channel ID | 0

.ﬁ General Read Version ‘ Read Weight ‘
Read S/IN ‘ Zero Scale
‘-:u’ Weight ‘ Set ID ‘ Reset Scale
I Read ID ‘ Calibration
SetModel | [FE0D25 |
\BLI Params ‘ Read Model ‘
Set Cal weight | |
Read Cal Weight ‘

{03 Settings
-y g

Status

Figure 6.3: Shows Ul of Speed software used to configure and calibrate weighing sensors.
Source: Mettler Toledo Software.

and RFID reader in dead-load would lessen the complication in finding the number of
parts as the weighing sensor will report only the weight of parts as opposed to the weight
of the whole setup. However, weight of container is still a data node in our information
model and ontologies in order to capture as much data as possible.

This software implementation can be done for a micro-controllers, a Raspberry Pi (RPi) or
a computer. RPi has more computational power than micro-controllers. It also has lower
cost & lower power consumption than computers and is easy to use for programming.
Hence, RPi was used for the implementation.

The weighing module uses communication protocol RS485 whereas the de-facto protocol
for computer communications is R3232. There are multiple ways of converting R5485
signals to RS232. One off-the-shelf solution is using a converter box provided by Mettler
Toledo. Other options are using RS485 to RS232 USB-serial converter or an R3485
shield. A shield is an extension board that sits on RPi, receives voltage corresponding to
RS485 and converts it RPi standard 1/0 voltages. These setups for communication were
tried and a RS485 shield was chosen for use in implementation as it does not require any
converter to change the voltage and is mounted directly on the RPi. Figure [6.4] shows
the final setup used to implement the weighing module.

70

CHAPTER 6. IMPLEMENTATION

RFID readers attached
to USB hub

Switch for
weighing module

Raspberry Pi

Container with parts

Wire used for both
communication and
power and weighing

module Weighing sensor

Figure 6.4: Shows weighing module implementation which deals with collecting data from
weighing sensors and RFID tags and extracting number of parts in each
container. This information is sent to the central system.

A switch is used to power the weighing module that consists of multiple weighing sensors.
Figure [6.4] shows three weighing sensors attached to a switch. The weighing module uses
a LAN (RJ45) cable to power and to send/receive data to RPi. LAN cable contains eight
wires in all: two wires for +V/, two wires for — V', two wires to earth and two wires for
communication. An external power supply of 12V is used to power both weighing module,
through the +V and —V wires of the LAN cable, and the RPi. The transmission and
reception (Tx-Rx) wires are attached to the RS485 shield at ports A and B (see Figure[6.5).

HEAD | L | x | C | END

Listing 6.1: An schematic layout of an encoded message to the weighing module. See
Figure for an explanation of each part of the command.

A Python program is written to calibrate the module. The program sends byte-encoded
messages to the sensor which responds by sending bytes back. The byte code message for
different commands are provided by Mettler Toledo as the documentation for weighing
module. The documentation and code written for reading sensor data are provided in the

71

CHAPTER 6. IMPLEMENTATION

RX X

9 —3V3——5V0—\ el 5
..: (3 GND|I
) o O3V
001" IR AR 33
S| P7P6P5P4P3P2P1 PO[E , .o CE1
- lf_J C o[H CED
o) \H 'J' SCLK
) 1 32 MISO
4 oy r3[} r‘l_‘ U
l—‘-’-r*ﬁ Lt R7_RO_ RS SE
¢ ol M (i1 Ehmd] SCL
® 9 G o I O O SDA
= - 0000N0
; 0000 A llE

m
O

Figure 6.5: An image of the RS485 shield we used. The 1/O pins A and B are the blue
pins towards the bottom left (clearly marked). Source: https: //www.
sparkfun. com/ products/ 13706.

digital appendix attached to the thesis. The module works on the principle that it gets a
predefined encoded message from the user/RPi and depending on the value of message
it returns the desired bytes. Listing shows the general encoding of messages to/from
sensors. Definitions regarding the command are provided thereafter in Figure [6.6]

Raw data from weighing sensors are read in hexadecimal form and is converted to decimal
for the ease of reading and understanding. Part information is read from RFID tags which
are placed at the bottom of containers. RFID readers are attached to RPi through a
USB hub as shown in Figure [6.4, RPi collects the data from sensors, part information
from RFID tags and extract information regarding total number of parts and change in
number of parts for each container. Python code also incorporates the detail of inventory
threshold for each part. If inventory for a part goes below this threshold, a flag is raised
to signal that refilling of parts is required.

72

https://www.sparkfun.com/products/13706
https://www.sparkfun.com/products/13706

CHAPTER 6. IMPLEMENTATION

HEAD | 0xF2
Length in bytes counting from the byte after the L-byte to the
L end including checksum byte and END
X Command byte and literal values to the command
Checksum byte XOR function on all bytes preceding the
Cc checksum byte, not including HEAD byte.
END | OxF3

Figure 6.6: Shows definitions of command bytes in a communication protocol used for
weighing module. Commands start with a HEAD character followed by a
length byte, the command itself, a checksum byte, and an END character at
the end.

6.2 Communication Design

This section describes communication between RFID readers, weighing sensors, RPi &
the central system and makes a few recommendations. In the implemented weighing
module, communication uses both push and pull modalities. The weighing module is
calibrated before use. RPi pulls data from weighing sensors & RPi and RFID readers
push data to the central system.

For the ease of understanding, a sequence diagram is drawn showing communication
between different entities shown in Figure [6.7] Sequence diagram shows how objects
operate with respect to time.

Weighing sensors send encoded bytes to weighing module which is processed to interpret
the weight read by the sensor. RFID readers send the part information to the central
system and weighing module. Weighing module uses data from RFID readers to map
containers, and the sensor weight values, to parts. Weighing module further processes
the data using sensor value hasTotalWeight and RFID information hasPartWeight to
get hasNumberOfParts for a container.

Communication between RPi and weighing module is written in Python and communi-
cation between RFID reader and RPi is done using ZeroMQ. ZeroMQ is an efficient, em-
beddable library which handles messages asynchronously in background threads [Hin13].

73

CHAPTER 6. IMPLEMENTATION

Central System Weighing Module RFID Weighing Sensor

; |
| [
| [
| 1
n [
- Partsintormation - Partslntormation [:I I—

S TororPaTsT a ToFETWeight T T u
I
L
- MumOtParts2 3 TotalWeighta T
I T
| e
- THTWE
ghtd |
S —Torotraes =
< T
Partsinformation Partsinformation 1l
(Update) (Update)
- FMumorPartsl : Mew TotalWelghtl -
|
[

|
T T '
i X I

Figure 6.7: Shows sequence diagram of communication between weighing module and
the central system. Weighing module consists of weighing sensors and RFID
readers. ACK of receiving messages are implicit (not shown).

It does not need locks or semaphores which makes it easy to use. It is highly useful in
Service Oriented Architecture where services can join and leave the network any time.
ZeroMQ also automatically queues messages when needed. This helps in error proofing
the system. For example, messages sent by RFID readers while the module is busy read-
ing the weighing sensor values would not be lost as ZeroMQ queues it. It also handles
network errors effectively. In the implementation, RPi sends variables, hasPartName and
corresponding hasNumberOfParts, to the central system. There is a layer of abstraction
(implemented in C#) between the code running on the module and the central system.

The time interval to update values is decided depending on the processing power of the
machine, amount of data to be transmitted and hardware challenges like heat dissipation.

74

CHAPTER 6. IMPLEMENTATION

The degree of system sophistication and intelligence depends on the hardware and algo-
rithms used in the process. In the implementation, RPi sent data to the central system
once every two seconds.

6.3 Recommendations

The weighing module must be developed keeping in mind the failures and errors that
might happen while deploying the system. Thus, the system must have certain properties
which make it error proof. Intertwined with the desirable properties of the system, some
practical recommendations regarding implementation are also made in this section. The
inspiration for these recommendations comes from design of concurrent systems [And91].

Safety property asserts that nothing bad happens. The foremost requirement to im-
plement this property is the system should not be in an invalid state at any point in
time. For CPS, it means that the module should never report values which are not
computed from its sensor values. A discrepancy may result from the scenario that the
module reports a value to the Central System after it has probed one sensor but before
probing another sensors, if the report contains values which were computed using both
the sensor’s readings (one of the sensors may have out-dated value). An invalid state
can also be a deadlocked state where there are no outgoing transitions, such as an error
state. Semaphores, mutex and locks should be judiciously used during development to
avoid such scenarios. As a side-note, handling missing values (which is a subset of error
states) gracefully is a potential future extension of this thesis.

Liveness property asserts that the system will perform its intended use eventually. In
other words, liveness means that the system will continue to make progress. This implies
ensuring that the semaphores and mutexes will be unblocked and the module will, even-
tually, send data to the Central System. Though several race conditions can be avoided
simply by using atomic operations exclusively, it is possible to end up in a live-lock. Say
the module has a hard parameter which controls after how long a sensor’s data is consid-
ered stale. Then say the module reads data from one sensor, and then while it is reading
data from another sensor, the data from the first sensor becomes stale. So the module
will go back to re-reading data from the first sensor and in the meanwhile data from the
second sensor becomes stale. This could bind the module into a sensor reading infinite
loop. During implementation, such situations should be carefully thought about and the
liveness of the module should be tested/verified under the most extreme of conditions.

Encapsulation is another way of making system more reliable. Encapsulation is re-

75

CHAPTER 6. IMPLEMENTATION

stricting direct access of software components so that they cannot interfere with other
subsystems or privileged-level software. It keeps faults from propagating which increases
the reliability of the overall system.

Finally, in case everything fails, a watchdog timer (or a Heartbeat) can be used to
detect the catastrophic failures and recover from it. The timer is regularly reset by
computer during normal operation, but it timeouts if there is a hardware or software
error. The timeout signal initiates a corrective measure by placing the system in a safe
state or restoring normal operation. One of the ways this can be accomplished is by
using a Hypervisor [Mas+09] which can simply restart the entire module in case the
timer timeouts.

These are some necessary properties that the system must have, but not sufficient to
ensure that it functions properly. In the end, the deployment and user feedback would
be the final test of the module.

76

7. Discussion and Outlook

This work has tried to address the complex problem of interoperability among assistance
modules, and CPS in general, with the help of ontologies. Along the way, various rec-
ommendations about development of the information model have been made along with
guidance about how to make certain design choices while using a Weighing Module as
an example. However, the proposed solution is best looked at as a framework. It leaves
open several avenues for future work. Some of the prominent directions will be discussed
in this section.

Section describes two ways of organizing the ontologies for central systems and CPS
modules. The section ends with the recommendation that there should be a committee
setup which oversees the maintenance of the mid-level ontology. However, setting up such
a committee is a non-trivial task which requires careful choice of who the stakeholders
are and who holds the power of arbitrage in case of disputes [Jac04]. Authentication and
authorization mechanisms also need to be designed as discussed in the section.

Further, Section [5.2.2] also talks briefly about the extension of variables imported from
upper ontologies as one of the significant areas where design decisions need to be made.
By default, ontologies are static objects: additions made locally to imported variables do
not propagate to other teams working with the same imported ontology automatically. If
such synchronization were possible, it may prevent reinvention of variables and may save
the effort to resolve discrepancies among reinvented variables even more than having a
committee make these decisions. This is a feature that designers of Protégé may want to
look into. In the present scenario, this issue can be resolved to some extent by informing
all stakeholders about local changes made to the ontology via third-party solutions like
mailing lists.

Knowledge mapped in ontologies may evolve over time due to modifications in conceptu-
alization and adaptation to incoming changes. Evolution of ontologies cause backwards
compatibility problems and thus hamper its reuse. A versioning mechanism is required

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 77
Semantically Described CPS Module

CHAPTER 7. DISCUSSION AND OUTLOOK

to explicitly define versions and relations between versions [KF01]. This is not discussed
in this thesis but is a necessary feature to promote adoption of ontologies in real-life
settings.

Another feature which is missing from the ontologies is explicit modeling of the notion of
time. As noted in Section [5.2] the issue can be addressed to some extent by adding time-
stamps to values or through programming outside the ontologies. However, adopting
CHRONOS [PPB14] can make the handling of time more elegant and will allow us to
include constraints on temporal evolution of values (e.g. value X can only be set after
value Y has been set). This is an interesting direction of research which can lead to
much more expressive ontologies.

The problem of missing data has largely been ignored in this thesis. A guide is necessary to
deal with it gracefully. For example, a module may provide all the necessary information
required by the central system but lack data suggested by the mid-level ontology. A
protocol should be developed to deal with such errors without halting or rendering the
complete system invalid. The protocol should also have a way to communicate these
errors/omissions to engineers and the central system. Note that some recommendations
are made in Section [6.3] to harden the system against such issues.

An immediate next step in line with the thesis work is to further develop an end-to-end
implementation using ontologies as discussed in Chapter [l Implementation would ensure
that the demonstrations made in Protégé actually work with hardware sensors and that
the modules can access and exchange data. As such, there are no foreseeable hindrances
that one might face during implementation but run-time errors may occur which would
need to be resolved as they are witnessed. A prototype implementation in Protégé is
done as a part of this thesis.

Section[6.2]discusses selected challenges faced during designing the communication phase
of the system. There can be hardware errors as well as run-time errors which might render
system in invalid or end state. It is important to work in this area to make the system safe
and reliable. A few such errors can be taken care of during programming by providing
and filtering data provided by sensors and by queuing the messages sent and received
during communication. Nevertheless, this area needs further exploration and, on top of
the guiding principles offered in Section [6.3| needs a comprehensive treatment.

78

8. Summary

The thesis deals with development of a CPS module for an assistance system during
manual assembly. Further, a framework for designing and semantically describing CPS
modules which allows for interoperability across modules. Semantic descriptions are
largely self documentation of modules and abstraction over the low level details of raw
data collected through sensors. Ontologies are chosen for semantic description of mod-
ules as they formally and explicitly define objects and relationships between them. An
upper ontology is a high level, domain-independent ontology which describes framework
and basic vocabulary. An assistance system upper ontology is designed at the beginning
of the design of assistance system which contains minimal information needed by the
central system from all modules. It helps other CPS modules to easily access the infor-
mation collected by processing data from various sensors. Thus, each module collects
and processes data and provides information to other modules.

The framework proposed in the thesis provides steps to take in order to design a CPS
module and describe it semantically for interoperability of data. At the advent of design
phase of a CPS module, its scope and intelligence need to be defined. To define scope
of modules, an analogy to the concept of sufficient statistic in mathematics is drawn.
Sufficient statistic for a module is defined by the minimal information needed by the
central system from modules to understand and exchange data. System intelligence
depends on the hardware and algorithms used to process information. In the next step,
information model is designed which identifies all input data, both from sensors and
otherwise static values of the system. The data is preprocessed to get the minimal
information required by the central system to operate. Based on the information models,
ontologies of modules are created.

Two approaches for designing ontologies of modules are proposed: a decentralized orga-
nizational scheme and a centralized organizational scheme. Decentralized scheme defines
upper ontologies of assistance system and modules. Module ontologies import upper on-
tology of assistance system and any other module they wish to interoperate with. In

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 79
Semantically Described CPS Module

CHAPTER 8. SUMMARY

contrast, in centralized scheme along with upper ontologies of assistance system and
modules, a mid-level ontology is created which defines variables of various modules. The
mid-level ontology imports assistance system upper ontology and upper ontologies of
modules import the mid-level ontology. Pros and cons of both organizational schemes
are discussed.

The development process of a weighing module is used as a case study for the thesis.
Sufficient statistic, system intelligence and various design decisions which need to be
made while developing the information model and the ontology of weighing module are
explored. Ontologies for both decentralized and centralized organizational schemes are
created with a detailed step-by-step description. An example ontology of eye-tracking
module is also created and data exchange between weighing and eye-tracking modules is
demonstrated in Protégé.

On the hardware demonstration front, first phase of a weighing module implementation
is completed. In this phase, RFID tags are used to calibrate the position of containers
and to get information about the parts stored in containers. Raw data collected by
weighing sensors are processed to get information about the total number of parts in
each container. Complete information about part and number of parts in each container
is sent to the central system of assistance system. Python and ZeroMQ are used to code
and send data over wire. Communication is described using sequence diagram and a few
recommendations regarding implementation are made. In the second phase, ontologies
designed for use case to describe CPS module and query data across modules should be
implemented on hardware in real-time.

Finally, discussion of the limitations and future directions concludes the thesis.

80

Bibliography

[And91] Gregory R Andrews. Concurrent programming: principles and practice. Ben-
jamin/Cummings Publishing Company, 1991.

[Ara+01] Tamio Arai et al. “Holonic assembly system with Plug and Produce”. In:
Computers in Industry 46.3 (2001), pp. 289-299.

[AKO5] Colin Atkinson and Kilian Kiko. “A detailed comparison of UML and OWL".
In: (2005).

[Baa03] Franz Baader. The description logic handbook: Theory, implementation and
applications. Cambridge university press, 2003.

[BG11] R Baheti and H Gill. “Cyber-physical systems. The Impact of Control Tech-
nology, T. Samad and AM Annaswamy”. In: /EEE Control Systems Society
1 (2011).

[Bat+07] Rafael Batres et al. “An upper ontology based on ISO 15926" . In: Computers
& Chemical Engineering 31.5 (2007), pp. 519-534.

[Bei+08] Elena Beisswanger et al. “BioTop: An upper domain ontology for the life
sciences”. In: Applied Ontology 3.4 (2008), pp. 205-212.

[BGM14] Dan Brickley, Ramanathan V Guha, and Brian McBride. "RDF Schema 1.1".
In: W3C recommendation 25 (2014), pp. 2004-2014.

[BKA10] M Broy, H Kagermann, and R Achatz. “Agenda cyber physical systems:
Outlines of a new research domain”. In: German Academy of Science and
Technology (Acatech), Tech. Rep. (2010).

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. “An ontology for context-aware
pervasive computing environments”. In: The knowledge engineering review
18.3 (2003), pp. 197-207.

Modular and Adaptive Assistance System for Manual Assembly - Engineering a 81

Semantically Described CPS Module

BIBLIOGRAPHY

[Che-+15]

[CGY07]

[Fis22]

[GBAL5]

[Gao+09]

[GWM11]

[Gra+16]

[Gro+09]

[HPO16]

[Hin13]
[Hoel0]

[Jac04]

Chih-Hong Cheng et al. “Semantic degrees for industrie 4.0 engineering:
Deciding on the degree of semantic formalization to select appropriate tech-
nologies” . In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM. 2015, pp. 1010-1013.

Nadine Cullot, Raji Ghawi, and Kokou Yétongnon. “DB20OWL: A Tool for
Automatic Database-to-Ontology Mapping.” In: SEBD. 2007, pp. 491-494.

Ronald Aylmer Fisher. “On the mathematical foundations of theoretical
statistics”. In: Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character 222
(1922), pp. 309-368.

Mehdi Gaham, Brahim Bouzouia, and Noura Achour. “Human-in-the-Loop
Cyber-Physical Production Systems Control (HiLCP2sC): a multi-objective
interactive framework proposal” . In: Service Orientation in Holonic and Multi-
agent Manufacturing. Springer, 2015, pp. 315-325.

Shudi Gao et al. “W3C XML schema definition language (XSD) 1.1 part 1:
Structures”. In: W3C Candidate Recommendation 30.7.2 (2009).

Dominic Gorecky, Simon F Worgan, and Gerrit Meixner. “COGNITO: a cog-
nitive assistance and training system for manual tasks in industry”. In: Pro-

ceedings of the 29th Annual European Conference on Cognitive Ergonomics.
ACM. 2011, pp. 53-56.

Irlan Grangel-Gonzalez et al. “Towards a semantic administrative shell for in-
dustry 4.0 components”. In: Semantic Computing (ICSC), 2016 IEEE Tenth
International Conference on. |IEEE. 2016, pp. 230-237.

W3C Owl Working Group et al. "{OWL} 2 Web Ontology Language Doc-
ument Overview”. In: (2009).

Mario Hermann, Tobias Pentek, and Boris Otto. “Design principles for in-
dustrie 4.0 scenarios”. In: System Sciences (HICSS), 2016 49th Hawaii In-
ternational Conference on. |IEEE. 2016, pp. 3928-3937.

Pieter Hintjens. ZeroMQ: messaging for many applications.” O’Reilly Media,
Inc.”, 2013.

Robert Hoehndorf. “What is an upper level ontology?” In: Ontogenesis
(2010).

lan Jacobs. “World wide web consortium process document”. In: Available
via the World Wide Web at https: //www. w3. org/ 2017/ Process -
20170301/| 14 (2004).

82

https://www.w3.org/2017/Process-20170301/
https://www.w3.org/2017/Process-20170301/

BIBLIOGRAPHY

[Jaz14] Nasser Jazdi. “Cyber physical systems in the context of Industry 4.0". In:
Automation, Quality and Testing, Robotics, 2014 IEEE International Con-
ference on. |EEE. 2014, pp. 1-4.

[Jeo+17] Sunghwan Jeong et al. “Ontology Development for Dynamic Service Com-
position in Cyber-Physical Systems (CPSs)". In: International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing. Springer.
2017, pp. 601-610.

[KA82] Ralph Katz and Thomas J Allen. “Investigating the Not Invented Here (NIH)
syndrome: A look at the performance, tenure, and communication patterns
of 50 R & D Project Groups”. In: R&D Management 12.1 (1982), pp. 7-20.

[Kei05] Jeremy Keith. “A Brief History of JavaScript”. In: DOM Scripting: Web
Design with JavaScript and the Document Object Model (2005), pp. 3-10.

[KFO1] Michel Klein and Dieter Fensel. “Ontology versioning on the Semantic Web" .
In: Proceedings of the First International Conference on Semantic Web
Working. CEUR-WS. org. 2001, pp. 75-91.

[Knu04] Holger Knublauch. “Ontology-driven software development in the context of
the semantic web: An example scenario with Protege/OWL". In: Ist Interna-
tional workshop on the model-driven semantic web (MDSW2004). Monterey,
California, USA.[WWW document] http://www.knublauch.com/publications/MDSW2004.pdf.
2004, pp. 381-401.

[Kol+16] Dennis Kolberg et al. “CyProF-Insights from a Framework for Designing
Cyber-Physical Systems in Production Environments”. In: Procedia CIRP
57 (2016), pp. 32-37.

[LS§O4] Martin Labsky, Vojtech Svatek, and Ondrej Svab. “Types and Roles of On-
tologies in Web Information Extraction”. In: ECML/PKDD04 Workshop on
Knowledge Discovery and Ontologies, Pisa. 2004.

[Lee08] Edward A Lee. “Cyber physical systems: Design challenges”. In: Object ori-
ented real-time distributed computing (ISORC), 2008 11th IEEE interna-
tional symposium on. |IEEE. 2008, pp. 363-369.

[LBK15] Jay Lee, Behrad Bagheri, and Hung-An Kao. "“A cyber-physical systems ar-
chitecture for industry 4.0-based manufacturing systems” . In: Manufacturing
Letters 3 (2015), pp. 18-23.

83

BIBLIOGRAPHY

[LFV13]

[Lei09)]

[Mas+09]
[Mon14]

[NPO1a]

[NPO1b]

[Noy—+01]
[N+01]

[0J15]

[Pér+15]

[PGM99]

[PZG16]

Christoph Legat, Jens Folmer, and Birgit Vogel-Heuser. “Evolution in in-
dustrial plant automation: A case study”. In: Industrial Electronics Society,
IECON 2013-39th Annual Conference of the IEEE. |IEEE. 2013, pp. 4386—
4391.

Paulo Leitdo. “Agent-based distributed manufacturing control: A state-of-
the-art survey”. In: Engineering Applications of Artificial Intelligence 22.7

(2009), pp. 979-991.

Miguel Masmano et al. “Xtratum: a hypervisor for safety critical embedded
systems”. In: 11th Real-Time Linux Workshop. 2009, pp. 263-272.

Laszl6 Monostori. “Cyber-physical production systems: Roots, expectations
and R&D challenges”. In: Procedia CIRP 17 (2014), pp. 9-13.

lan Niles and Adam Pease. “Origins of the IEEE standard upper ontology" .
In: Working notes of the IJCAI-2001 workshop on the IEEE standard upper
ontology. 2001, pp. 37-42.

lan Niles and Adam Pease. “Towards a standard upper ontology”. In: Pro-

ceedings of the international conference on Formal Ontology in Information
Systems-Volume 2001. ACM. 2001, pp. 2-9.

Natalya F Noy et al. “Creating semantic web contents with protege-2000".
In: IEEE intelligent systems 16.2 (2001), pp. 60-71.

Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101:
A guide to creating your first ontology. 2001.

Marek Obitko and Vaclav Jirkovsky. “Big data semantics in industry 4.0".
In: International Conference on Industrial Applications of Holonic and Multi-
Agent Systems. Springer. 2015, pp. 217-229.

Federico Pérez et al. “A CPPS Architecture approach for Industry 4.0".
In: Emerging Technologies & Factory Automation (ETFA), 2015 IEEE 20th
Conference on. |IEEE. 2015, pp. 1-4.

H Sofia Pinto, Asuncién Gémez-Pérez, and Jodo P Martins. “Some issues on
ontology integration”. In: IJCAI and the Scandinavian Al Societies. CEUR
Workshop Proceedings. 1999.

Bogdan-Constantin Pirvu, Constantin-Bala Zamfirescu, and Dominic Gorecky.
“Engineering insights from an anthropocentric cyber-physical system: A case
study for an assembly station”. In: Mechatronics 34 (2016), pp. 147-159.

84

BIBLIOGRAPHY

[PPB14]

[Qui+16]

[Raj+14]

[RPO4]

[Rif11]

[Rom-+15]

[Rom-+16]

[Sal+15]

[SPO04]

[Smi01]
[Sow01]

[Sow+00]

Alexandros Preventis, Euripides GM Petrakis, and Sotirios Batsakis. “Chronos
Ed: A tool for handling temporal ontologies in Protege”. In: International
Journal on Artificial Intelligence Tools 23.04 (2014), p. 1460018.

Fabian Quint et al. “A System Architecture for Assistance in Manual Tasks.”
In: Intelligent Environments (Workshops). 2016, pp. 43-52.

Akshay Rajhans et al. “Supporting heterogeneity in cyber-physical systems
architectures”. In: IEEE Transactions on Automatic Control 59.12 (2014),
pp. 3178-3193.

Sudha Ram and Jinsoo Park. “Semantic Conflict Resolution Ontology (SCROL):
An ontology for detecting and resolving data and schema-level semantic

conflicts”. In: IEEE Transactions on Knowledge and Data engineering 16.2
(2004), pp. 189-202.

Jeremy Rifkin. The third industrial revolution: how lateral power is trans-
forming energy, the economy, and the world. Macmillan, 2011.

David Romero et al. “Towards a human-centred reference architecture for
next generation balanced automation systems: human-automation symbio-
sis”. In: IFIP International Conference on Advances in Production Manage-
ment Systems. Springer. 2015, pp. 556-566.

David Romero et al. “Towards an Operator 4.0 Typology: A Human-Centric
Perspective on the Fourth Industrial Revolution Technologies”. In: Interna-
tional Conference on Computers and Industrial Engineering (CIE46) Pro-
ceedings. 2016.

Alfredo Alan Flores Saldivar et al. “Industry 4.0 with cyber-physical integra-
tion: A design and manufacture perspective”. In: Automation and computing
(ICAC), 2015 21st international conference on. IEEE. 2015, pp. 1-6.

Salim K Semy, Mary K Pulvermacher, and Leo J Obrst. Toward the use of an
upper ontology for US government and US military domains: An evaluation.
Tech. rep. MITRE CORP BEDFORD MA, 2004.

Richard E Smith. Authentication: from passwords to public keys. Addison-
Wesley Longman Publishing Co., Inc., 2001.

John F Sowa. “Building, sharing, and merging ontologies”. In: web site:
http://www.jfsowa.com/ontology/ontoshar.htm (2001).

John F Sowa et al. “Knowledge Representation: Logical”. In: Philosophical,
and Computational Foundations, Brooks/Cole, Pacific Grove (2000).

85

BIBLIOGRAPHY

[5510]

[TJH16]

[Vil+17]

[Wah14]

[Wan+16]

[Wan+-04]

[Wey+15]

[Wu+17]

[Zez+16]
[Zue08]

[Zuel0]

Steffen Staab and Rudi Studer. Handbook on ontologies. Springer Science
& Business Media, 2010.

Sebastian Thiede, Max Juraschek, and Christoph Herrmann. “Implementing
cyber-physical production systems in learning factories”. In: Procedia CIRP
54 (2016), pp. 7-12.

Valeria Villani et al. “Towards modern inclusive factories: A methodology
for the development of smart adaptive human-machine interfaces” . In: arXiv
preprint arXiv:1706.08467 (2017).

Wolfgang Wabhlster. “Semantic technologies for mass customization”. In: To-
wards the Internet of Services: The THESEUS Research Program. Springer,
2014, pp. 3-13.

Shiyong Wang et al. “Implementing smart factory of industrie 4.0: an out-
look™. In: International Journal of Distributed Sensor Networks 12.1 (2016),
p. 3159805.

Xiao Hang Wang et al. “Ontology based context modeling and reasoning us-
ing OWL". In: Pervasive Computing and Communications Workshops, 2004.
Proceedings of the Second IEEE Annual Conference on. leee. 2004, pp. 18—
22.

Stephan Weyer et al. “Towards Industry 4.0-Standardization as the crucial
challenge for highly modular, multi-vendor production systems”. In: IFAC-
PapersOnLine 48.3 (2015), pp. 579-584.

Zhenyu Wu et al. “Towards a Semantic Web of Things: A Hybrid Seman-
tic Annotation, Extraction, and Reasoning Framework for Cyber-Physical
System”. In: Sensors 17.2 (2017), p. 403.

F Zezulka et al. “Industry 4.0-An Introduction in the phenomenon”. In:
IFAC-PapersOnLine 49.25 (2016), pp. 8-12.

Detlef Zuehlke. “Smartfactory—from vision to reality in factory technologies” .
In: IFAC Proceedings Volumes 41.2 (2008), pp. 14101-14108.

Detlef Zuehlke. “SmartFactory—Towards a factory-of-things". In: Annual
Reviews in Control 34.1 (2010), pp. 129-138.

86

	Introduction
	Research Topic
	State-of-the-art
	Industry 4.0
	Smart Factory
	Human-in-the-loop
	Manual assembly stations
	Assistance System
	Ontologies
	Upper Ontologies
	Mid-level Ontologies
	Representation of Ontologies
	Structure of Ontologies in Protégé
	Ontology Integration
	Ontology Conflicts
	Temporal Dynamic Ontologies
	Importance of Ontologies in Context of Industry 4.0

	Methodology
	 Concept
	Framework
	Objective
	System boundary
	System intelligence
	Developing information model & ontology
	Merging ontologies

	Model Development
	Information model
	Weighing module ontology

	Implementation in Protégé
	Implementation of decentralized organizational scheme
	Implementation of centralized organizational scheme
	Deployment

	Implementation
	Hardware Design
	Communication Design
	Recommendations

	Discussion and Outlook
	Summary
	Bibliography

